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Abstract 

EVALUATION OF CANNABINOID RECEPTOR INTERACTION OF ANANDAMIDE, 
AN ENDOGENOUS CANNABINOID RECEPTOR LIGAND 

Irma Bateman Adams, Ph.D. 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor 
of Philosophy at Virginia Commonwealth University. 

Virginia Commonwealth University, 1996 

Director: Dr. Billy R. Martin, Professor 
Department of Pharmacology and Toxicology 

Recent evidence implicates anandamide as the endogenous ligand for the 

cannabinoid receptor. One purpose of this study was to determine the structural 

requirements for anandamide's receptor interaction and the influence of 

phenylmethylsulfonyl fluoride (PMSF), an enzyme inhibitor, on receptor affinity. A 

second objective was evaluation of the correlation between affinities of the analogs and in 

vivo pharmacological activities. The ability of anandamide and analogs to displace [3H]-

CP 55,940 was determined by a filtration assay. Displacement curves for anandamide in 

the presence of PMSF produced a Ki of 89 ± 10 nM; without PMSF the Ki increased to 

5400 ± 1600 nM. Anandamide analogs were evaluated for their ability to produce 

antinociception and hypomotility. The levels of saturation and substituents for the 

ethanolamide and hydroxyl groups of the anandamide structure were critical to receptor 
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affinity and in vivo potency. Increasing the length of the N-substituent by one or two 

carbons decreased receptor binding affinity. Methylations at carbons 2 and l' produced 

compounds stable in the absence of PMSF. Addition of larger alkyl groups at these 

positions or nitrogen methylation reduced receptor affinity and behavioral potency. These 

results indicate that methylations at specific carbons of anandamide confer stability in vitro. 

A final objective was to characterize anandamide's binding to the cannabinoid receptor in 

the CNS. Anandamide's receptor binding affinities and binding densities, as determined 

from autoradiographic experiments in rat brain, from selected brain areas were compared to 

the receptor binding densities and patterns of two other compounds, CP 55,940 and SR 

147116A, that bind to the central cannabinoid receptor. The lack of difference between 

receptor affinity, receptor distribution and parallelism of the displacement curves indicate 

that anandamide, SR 141716A and CP 55,940 are binding to the same receptor in the same 

manner. 
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I. General Introduction 

Although used for centuries for both medicinal and recreational purposes, no other 

drug of abuse, as defined by the United States Controlled Substances Act, arouses greater 

controversy than cannabis. Cannabis use is widespread throughout the world; in fact, it is 

the most prevalently used drug in many countries. Despite efforts to curtail its use in the 

United States, cannabis remains one of the most commonly abused drugs, ranking only 

behind the consumption of alcohol and cigarettes. According to the National Institute on 

Drug Abuse 1995 National Household Survey on Drug Abuse, approximately 59% of 

adults in the United States between the ages of 26 and 34 have used cannabis in their 

lifetime. Importantly, 2-3% of the population in the United States consume cannabis on a 

daily basis. Public debate centers upon the possible legalization of cannabis for certain 

therapeutic uses, such as glaucoma treatment, appetite stimulation in AIDS patients and 

suppressing nausea resulting from chemotherapy. By the early 1980s extensive research 

had provided information concerning the identification of cannabinoids in the plant and the 

physiochemical and biochemical properties of these compounds. Numerous breakthroughs 

in the past few years have greatly increased our understanding of cannabinoids. The 

history, chemistry, pharmacology and toxicology of cannabis in both animals and humans 

is extensive. Furthermore, the complex and often ambiguous health consequences and 

clinical utility of cannabinoids continue to be of vital concern to health care providers. 

Recent advances, such as the characterization and cloning of a specific cannabinoid 

receptor, identification of a second messenger system and isolation of an endogenous 

ligand provide insight for the direction of future research for this fascinating dmg. 
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History and Prevalence of Use 

References to the use of the plant Cannabis sativa, also known as Indian hemp, date 

back over twelve thousand years (Abel, 1979). Cannabis has long been used as a medicine 

in China, India, the Middle East, South Africa and South America. Egyptian, Chinese 

(2700 B.C.) and Assyrian (800 B.C.) sources indicate that it is one of the oldest drugs in 

history (Mechoulam and Feigenbaum, 1987). The earliest reference to the medicinal 

properties of cannabis dates back to 2700 B.C. (Grinspoon and Bakalar, 1993). The 

Chinese emperor Shen-Nung described cannabis in a book that later became the standard 

Chinese compendium of medicines. The Chinese used cannabis for treatment of 

constipation, malaria, rheumatic pains and female disorders. The euphoric properties of 

cannabis were discovered in India between 2000 and 1400 B.C., and cannabis was 

recommended medicinally for reducing fevers, producing sleep, stimulating the appetite, 

relieving headaches and curing venereal diseases (Mechoulam and Feigenbaum, 1987). In 

addition to its purported medicinal properties, the ancient Chinese and Greeks used 

cannabis to make ropes and clothes. Romans were also aware of the strength of cannabis 

rope and used it in naval construction. The plant was cultivated for its fiber early in 

American history at Jamestown, Virginia in 1611 (Grinspoon and Bakalar, 1993). Even 

today, interest continues in the hemp plant for the purpose of making clothes. 

Cannabis was introduced into Western medicine several millennia later following 

the publication of a treatise in 1839 by W. B. O'Shaughnessy, a 30-year-old Irish 

physician serving in the British army in India (Lemberger, 1984; Snyder, 1971). He 

carefully reviewed literature on the uses of cannabis in Indian medicine that spanned nine 

hundred years and concluded that cannabis was a very safe drug. To further confirm the 

safety of cannabis, he conducted a series of experiments in animals to determine its effects 

and dosage limits (Snyder, 1971). He found that cannabis was not harmful in animals, and 

even high doses did not kill mice, rats or rabbits. He administered cannabis to patients 
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suffering from seizures, tetanus, rabies and rheumatism and recorded success, though side-

effects, such as total catalepsy, sometimes occurred. He noted the anticonvulsive, 

analgesic, antianxiety and antiemetic properties of the drug. The reports of O'Shaughnessy 

made cannabis an acceptable form of medicine in England and other European countries 

(Mechoulam and Feigenbaum, 1987). At the turn of the twentieth century, the medicinal 

use of cannabis waned in the United States and Europe due to the development of synthetic 

medicines. 

The rising fear of cannabis use in the United States began in the 1920s, and the use 

of cannabis was abolished in the United States in 1937 with the enaction of the Marijuana 

Tax Act (Musto, 1987). The Mexican term marijuana refers to cannabis leaves or other 

crude plant material. Despite legal measures in the United States, cannabis still became a 

major drug of abuse in the late 1960s, with peak usage occurring in the late 1970s and early 

1980s. A United States Bureau of Census report in 1971 indicated that 40% of individuals 

between 18-25 years of age had experimented with cannabis, and 18% from the same age 

group currently used the drug. Drug usage data was also obtained in the United States with 

the National Household Survey on Drug Abuse and the Monitoring the Future Survey, 

which began collecting information in 1975 from young adults, college age students, 

twelfth grade students in public and private schools. Eighth and tenth graders were added 

in 1991. According to the Monitoring the Future Survey, 1979 was the peak year of use 

with 60.4% of twelfth graders having tried cannabis in their lifetime, and 50.8% of high 

school seniors in 1979 had used cannabis in the past year. In 1978, 37 .1 % of twelfth 

graders surveyed had used cannabis within 30 days, and 10.7% used cannabis on a daily 

basis. Following these peak years, cannabis use began a slow, but continuous decline, 

with the lowest levels of annual use occurring in 1992. In 1992, 21.9% of twelfth graders 

had used cannabis in the past twelve months, and 1.9% used the drug on a daily basis. 

The decline in use was linked to an increase in perceived risk and personal disapproval of 
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drugs (Hall, Johnston and Donnelly, in press). Surveys since 1992 indicated significant 

increases in all use categories (Johnston, O'Malley and Bachman, 1995). From 1992 to 

1994, lifetime use in twelfth graders increased 5.6%; annual use increased 8.8%; 30-day 

use increased 7.1 %, and daily use increased 1.7%. Although the current levels of cannabis 

use in the United States are still much lower than the peak periods, the recent increases 

represent an early warning that cannabis popularity could continue to increase, especially 

with the high school population. The recent upturn has been attributed to a decline in social 

disapproval of cannabis and in perceived risk, lower public attention to cannabis and an 

increase in prodrug messages in popular culture (Hall, Johnston and Donnelly, in press). 

The 1994 Monitoring the Future Survey reports that "perceived harmfulness" of cannabis 

experimentation for all age groups decreased. When asked in 1994 if "great risk" would 

result if cannabis was "smoked regularly", 65% of twelfth graders reported affirmatively. 

This response represents a 7.5% decrease from 1993. There was also an increase in 

participants who found that obtaining cannabis was "fairly or very easy." The increases in 

cannabis use, decline of perceived harmfulness and decline in social disapproval 

demonstrate an erosion of the anti-drug attitude in the United States (Hall, Johnston and 

Donnelly, in press). 

Epidemiological evidence is also available from other countries, and these studies 

are reviewed by Hall et al. (in press). In Canada several school studies have shown similar 

trends to the United States, with a rise in use in the 1970s followed by a decline throughout 

the 1980s. However, the rates of illicit drug use were lower than in the United States. A 

national telephone survey reported that 23% of those sampled had ever tried cannabis (Hall, 

Johnston and Donnelly, in press). Cannabis is the most commonly used illicit drug in 

Australia. A 1993 national survey of adults demonstrated that one-third had tried cannabis. 

Large increases in use between 1988 and 1992, especially in males, were reported in the 

Netherlands from a national survey of students aged 10 to 18. 
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Although cannabis is used throughout the world, limited survey data are available in 

other parts of the world. Often these data provides only a crude indication of use. Survey 

methods are not reported, results are presented in a summary format and the levels of use 

of teenagers is often underreported. Nevertheless, these surveys do give an indication of 

overall levels of use. Limited data are available from Africa (Hall, Johnston and Donnelly, 

in press). A survey of 5000 workers reported a prevalence of 11.5% for having used 

cannabis. In a Moroccan survey from Tangier, two-thirds of 500 students reported trying 

cannabis. Reported rates of cannabis use in South American countries is lower than in 

Western countries, including the United States, Canada, Europe and Australia (Hall, 

Johnston and Donnelly, in press). In Brazil, two school-based surveys conducted in 1987 

and 1989 demonstrated that 2.9% in 1987 and 3.4% in 1989 had used cannabis. Similar 

results were found in a 1992 National Household Survey on Drug Abuse in Colombia. 

Among 18- to 24-year-olds, 1.5% had used cannabis in the past year. In a survey 

conducted in Athens, Greece, which was based upon the substance use and attitudes 

sections of similar questionnaires of the World Health Organization and the United 

Nations, cannabis or hashish was the most frequently used illicit drug (Kokkevi, 1994). 

The highest lifetime rate of cannabis use was found in 25- to 35-year-old males (27.9%). 

A compilation of limited studies conducted in various hospitals in Lebanon indicated that 

hashish smoking is common, especially in rural areas where it often used daily (Hachem, 

1994). One street study found 142 out of 198 participants were hashish users (Hachem, 

1994). In Mexico, cannabis has been the most reported illicit drug of initiation in the past 

three years (Tapia-Conyer et al., 1994 ). India has a long tradition of cannabis use 

associated with religious ceremonies. Yet, only very limited surveys are available. 

Surveys conducted in three Northern Indian states between 1989 and 1991 found a lifetime 

prevalence rate of 3% and current use rate of 1 % (Hall, Johnston and Donnelly, in press). 

In Southern India a lifetime prevalence rate of 7% has been reported. Higher prevalence 
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rates of 10% to 27% exist among students. The limited data on cannabis use in African, 

Asian, Central and South American and Middle Eastern countries suggest that these 

countries have lower rates of lifetime cannabis exposure than many Western countries. 

Before definite conclusions are drawn, more complete and standardized surveys need to be 

conducted. However, it is clear that cannabis is used throughout the world, albeit at 

varying degrees. 

The Cannabis Plant 

The flowering tops and leaves of the plant Cannabis sativa, subspecies indica, 

secrete a resin containing psychoactive compounds called cannabinoids. The highest 

concentration of cannabinoids in the plant is found in the flowering tops followed by the 

leaves. Small amounts of cannabinoids are found in the stem and roots, and none in the 

seeds. The cannabinoid content of the plant varies widely depending upon the climate, 

soil, cultivation and type of plant. The plant is cut, dried and incorporated into cigarettes 

with or without tobacco. Three types of plant preparations are used, as identified by the 

Indian names bhang, ganja and charas (Grinspoon and Bakalar, 1993). Bhang is made 

from dried leaves and tops of uncultivated plants and contains a low resin content. Ganja is 

obtained from the leaves and tops of cultivated plants and has a higher resin content. The 

first two preparations are referred to as marijuana. Charas, also known as hashish, is 

prepared from the resin itself and is 5 to 10 times more potent than marijuana. Plant 

products are also chewed, smoked in a waterpipe or eaten in baked goods. 

A concern exists that the problem of elevated cannabis use may be compounded by 

recent increasing concentrations of �9-tetrahydrocannabinol (�9-THC), the primary 

psychoactive constituent in the plant, found in confiscated cannabis. During the late 1960s, 

the average level of �9-THC content was 1.5%. The levels steadily increased to the early 

1980s when concentrations had doubled to 3.0-3.5% (ElSohly and Ross, 1994). Seized 
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samples composed primarily of buds and sinsemilla (unfertilized flowering tops from the 

female Cannabis plant) contain much higher concentrations of t,9-THC. In fact, samples of 

cannabis sometimes contain concentrations of t,9-THC as high as 20%. Emphasis upon 

genetic experimentation and cross-breeding in recent years and developments in indoor 

hydroponic cultivation techniques have contributed to higher THC content in cannabis 

plants (Clarke, 1981 ). These efforts have enhanced THC levels in Dutch hemp 

("Netherweed") to concentrations averaging 20% (Hall, Johnston and Donnelly, in press). 

One may argue that the elevation in levels of t,9-THC has not contributed to cannabis use 

since there was a decline in use during the time when levels had increased and then 

stabilized. On the other hand, if highly potent cannabis becomes readily available, the 

patterns in cannabis use could be affected. 

Chemistry 

The cannabis plant contains over 400 chemical compounds. Approximately 60 of 

these compounds are cannabinoids. The term cannabinoid refers to the C2 l -compounds 

present in the plant and includes their transformation products and related analogs. The 

elucidation of the principal psychoactive constituents facilitated the ease of studying the 

pharmacological and behavioral effects of cannabis' specific constituents. Marijuana 

contains over 60 compounds which are structurally related cannabinoids. Four compounds 

important in terms of cannabinoid pharmacology are cannabinol (CBN), cannabidiol 

(CBD), (-)-t.9-trans-tetrahydrocannabinol (t.9-THC) and t,8-THC (Figure 1 ). Cannabinol 

was the first cannabinoid to be isolated and purified (Wood, Spivey and Easterfield, 1899), 

but its structure was not determined until later (Adams, Baker and Wearn, 1940). Also, 

cannabidiol was isolated and purified (Adams, Hunt and Clark, 1940), and its structure 

was later identified (Mechoulam and Shvo, 1963). The isolation of cannabinol and 

cannabidiol in the 1940s provided the general structure of the active principle of cannabis, 
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Figure 1. Structures of naturally occurring cannabinoids. 
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but CBN had little and CBD had no psychotomimetic activity (Adams, Baker and Wearn, 

1940; Adams, Hunt and Clark, 1940). Mechoulam and his colleagues in the 1960s first 

isolated �9-THC, later found primarily responsible for the psychoactive properties of the 

plant (Gaoni and Mechoulam, 1964). The synthesis of racemic (±)-�9-THC was 

described in 1965 (Mechoulam and Gaoni, 1965). A second psychotomimetic compound 

was also identified as �8-THC, a positional isomer of �9-THC (Hively, Mosher and 

Hoffmann, 1966). The pharmacological profiles for the two components are similar, with 

�9-THC possessing somewhat greater potency. 

Two numbering systems exist for cannabinoids: the dibenzopyran and 

monoterpenoid numbering systems. The former is recognized in Chemical Abstracts and 

will be used when referring to both naturally occurring and synthetic cannabinoids (Figure 

2). The formation of salts of naturally occurring cannabinoids is not possible since these 

compounds lack either a basic or acidic functional group. As a result, �9-THC is a 

noncrystalline, waxy-liquid substance at room temperature. �9-THC is unstable and loses 

potency upon storage. The main decomposition product of �9-THC is CBN. The high 

degree of lipophilicity and instability of cannabinoids complicates the preparing and 

handling of cannabinoid solutions. 

Structure-Activity Relationship Studies of Cannabinoids 

Efforts were undertaken to synthesize and evaluate cannabinoid analogs for the 

purpose of separating desired pharmacological effects from adverse effects and for the 

elucidation of the biochemical and molecular mechanisms of cannabinoid action. Initially, 

due to the lipophilic nature of �9-THC and the central depressant effects, cannabinoids 

were thought to mediate their actions through disruption of membrane ordering, similar to 

the mechanism of action of general anesthetics (Lawrence and Gill, 1975; Paton and 

Pertwee, 1972). Extensive structure-activity relationship (SAR) studies of cannabinoid 
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analogs revealed strict structural requirements for pharmacological activity and provided 

early evidence for a specific cannabinoid receptor. The first systematic SAR study in 

cannabinoids was conducted by Adams (1942) in the 1940s, and this work has been 

substantially supplemented with the pharmacological characterization of a wide variety of 

natural and synthetic cannabinoids, as reviewed by Razdan (1986). SAR studies are based 

primarily on animal behavioral paradigms such as dog static ataxia, drug discrimination and 

other specific mouse tests. While correlation does exist between potency in the dog static­

ataxia test and the psychoactive component of cannabinoids in humans (Razdan, 1986), 

extrapolation from animal models to human marijuana intoxication is still problematic. 

However, Balster and Prescott ( 1992) did describe a good correlation between human data 

and drug discrimination in animals for approximately 20 cannabinoid compounds. 

Chemically distinct subclasses of cannabinoid analogs exist with greater potency 

than t19-THC. Potent compounds have resulted from numerous structural alterations made 

to the basic template of t19-THC. Changes in side chain length or branching of the side 

chain at the C l' or C2' position (Figure 2) dramatically affects potency. Substitution of the 

pentyl group with a dimethylheptyl side chain and hydroxylation at carbon 11 of t18-THC 

resulted in 11-0H-!18-THC-DMH, a compound several hundred times more potent than t18-

THC in behavioral assays (Little et al., 1989; Mechoulam et al., 1988). A corresponding 

pharmacologically potent derivative of t19-THC, 11-0H-!19-THC-DMH (Figure 3), was 

also developed (Martin et al., 1991; Razdan, 1987). Hydroxylation in the side chain of t19-

THC or t18-THC at C3' increased behavioral activity 2 -fold (Agurell et al., 1976 ; Handrick 

et al., 1982). Hydroxylation at the CS' position of t18 -THC had little effect upon 

behavioral activity; yet, hydroxylation at the C l' and C2' positions decreased activity 

(Agurell et al., 197 6). These studies suggest that the position of side chain substituents 

and the orientation of the side chain are important for cannabinoid activity. Unsaturation in 
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the side chain did not affect potency, even though unsaturation acts to restrict the 

orientation of the side chain. 

�9-THC possesses a phenolic hydroxyl, gem-dimethyl groups on the pyran ring 

and an oxygen in the pyran ring. Alterations have been made to these sites (Razdan, 

1986). Substitution of the pyran oxygen with nitrogen or carbon atoms did not 

dramatically affect potency. Optimal activity resulted when the phenol group was either 

free or esterified. Etherification of the phenolic hydroxyl of �8- and �9-THC to 0-methyl 

analogs eliminated activity. Removal of gem-dimethyl groups on the pyran ring decreased 

activity. Alterations in the location and number of unsaturations in the terpene ring of �9-

THC produced differing effects in potency. Optimal activity resulted with a double bond at 

the C9 position, as in �9-THC; potency was somewhat reduced in �8-THC, and potency 

was even further reduced with �6a-10a_THC and CBN, which has complete unsaturation. 

Synthesis of the dimethylheptyl derivatives was based upon the three-point 

attachment theory and the necessity of an intact dibenzopyran ring system. A minimum of 

three points of attachment of �9-THC were postulated to interact with a receptor: 1) a free 

phenolic hydroxyl group; 2) an appropriate substituent at the C9 position; and 3) a 

lipophilic side chain (Binder et al., 1984; Howlett et al., 1988). While attempting to 

develop a unique analgesic, a group at Pfizer prepared novel bicyclic cannabinoid analogs 

with pharmacological profiles similar to �9-THC (Melvin et al., 1984). They found that 

the benzopyran ring system can be extensively modified or removed without loss of activity 

(Johnson and Melvin, 1986). CP 55,940 (Figure 3), the most widely used compound in 

the series, possessed potency 4-25 times greater than �9-THC, depending upon the 

pharmacological assay. Since the synthetic cannabinoids lacking a benzopyran ring 

represented the first significant deviation from the traditional THC structure, they were 

referred to as nonclassical cannabinoids. Due to the divergence in structure, great attention 

was placed upon proving that the bicyclic analogs were definitely THC-like. Evidence that 
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CP 55,940 is a cannabinoid emerged from studies showing that CP 55,940 and �9-THC 

cross-generalized in rat and monkey drug discrimination, and cross tolerance developed 

between the two compounds (Gold et al., 1992; Pertwee, Stevenson and Griffin, 1993). 

The pharmacological activity of �9-THC is stereoselective, with the (-)-trans isomer 

having 6-100 times more potency than the (+)-trans isomer, depending upon the 

pharmacological test (Dewey, Martin and May, 1984). However, the pharmacological 

profiles for the two enantiomers are similar. It has been argued that lack of complete 

enantioselecti vity is due to contamination of the (+)-isomer with the (-)-isomer 

(Mechoulam, 1988). Indeed, synthesis of crystalline derivatives of THC resulted in much 

greater purity of enantiomers and enantioselectivity (Little et al., 1987). Stereoselectivity 

for the psychoactive properties of cannabinoids was also demonstrated in human studies. 

The use of highly pure enantiomers of 11-0H-�8-THC-DMH further established that 

cannabinoids exhibit enantioselectivity (Mechoulam et al., 1988). The nonclassical tricyclic 

compounds CP 55,244 [(-)-ACD] (Figure 3) and CP 55,243 [(+)-ACD] showed 

enantioselectivity; CP 55,244 was significantly more potent than CP 55,243 in several of 

the behavioral tests (Little et al., 1988). The existence of high enantioselectivity reinforced 

the notion that cannabinoids act through a specific receptor. Although progress in the 

development of potent cannabinoid agonists has been slower than for other centrally acting 

agents, potent agonists recently have emerged and contribute not only to SAR, but to the 

notion that a highly unique endogenous cannabinoid exists. 

Although the bicyclic analogs contained unique characteristics, molecular modeling 

studies revealed that they still retained most of the structural characteristics of �9-THC. 

However, a truly novel class of compounds has emerged that differs greatly from both 

classical and bicyclic cannabinoids. Pravadoline, a non-steroidal antiinflammatory agent, 

had analgesic properties, but interestingly did not interact with the opioid system or inhibit 

cyclooxygenase. The search for the compound's mechanism of action led to the 
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development of aminoalkylindoles, such as WIN 55,212 (Figure 3) (Ward et al., 1990; 

Ward, ChjJders and Pacheco, 1989). These compounds, though structurally quite distinct 

from other cannabinoids, competed for binding to the cannabinoid receptor (Pacheco et al., 

1991) and possessed cannabimjmetic properties, including antinociception, in mjce and rats 

(Compton et al., 1992a). The discovery of anandamjde (arachidonylethanolamide) as a 

proposed endogenous cannabinoid ligand added yet another novel class to the cannabinoid 

pharmacophore of compounds that produce effects simjJar to !i9-THC (Figure 4) (Devane 

et al., 1992). Confirming the similarity of anandamide with Li9-THC requires future 

testing, particularly in humans. The emergence of four chemically distinct classes of 

cannabinoids will provide probes for studying the diverse actions of cannabinoids, and 

these probes should facilitate the separation of the psychoactive properties from the 

pharmacological effects. 

Animal Models and Pharmacology 

The purpose of evaluating cannabinoids in animals is to establish a parallel 

relationship between animals and humans and to extrapolate the animal effects to humans. 

The development of a number of animal models in the mouse, rat, dog, rabbit and monkey 

have allowed researchers to predict the psychoactivity of novel compounds. Extensive 

reviews of these results are found elsewhere (Dewey, 1986; Razdan, 1986). 

Pharmacological effects have been measured with models such as dog ataxia (Loewe, 

1947), the THC-seizure susceptible rabbit (Consroe, Martin and Fish, 1982), monkey 

overt behavior (Edery et al., 1971; Edery et al., 1972; Grnnfeld and Edery, 1969), drug 

discrimjnation (Balster and Prescott, 1992) and a mouse behavioral battery consisting of 

spontaneous locomotor activity, hypothermja, immobility (catalepsy) and antinociception 

(Martin, 1985). Although cannabinoids have direct cellular actions on peripheral tissues, 

most of the behavioral and pharmacological effects studied by researchers appear to involve 
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the central nervous system (Dewey, 1986). The high lipophilicity of cannabinoids allows 

passage across the blood-brain-barrier. 

Cannabinoids produce a unique syndrome of effects on the behavior of a wide 

variety of animal species. These behavioral effects are characterized at low doses as a 

mixture of depressant and stimulatory effects and at higher doses as predominantly CNS 

depression (Dewey, 1986). The depressant effects of psychotomimetic cannabinoids differ 

from other CNS depressants. ,19-THC and other psychoactive cannabinoids in mice 

produce a "popcorn" effect. Groups of mice in an apparently sedate state will jump 

(hyperreflexia) in response to auditory or tactile stimuli. As animals fall onto other 

animals, they resemble corn popping in a popcorn machine. This state of hyperreflexia is 

observed during the depressant stage at higher doses (Dewey, 1986). Cannabinoids 

generally cause a reduction in spontaneous locomotor activity (Little et al., 1988) and a 

decrease in response rates with different reinforcement schedules (Carney et al., 1979; 

Zuardi and Karniol, 1983). 

With the drug discrimination model, animals use internal cues to discriminate 

between the subjective effects of different drug classes. In this paradigm, rats, pigeons or 

non-human primates are trained to make different responses for reinforcement contingent 

upon administration of either the training drug or vehicle (Gold et al., 1992; Jarbe and 

Hiltunen, 1987; Weissman, 1978). After successful discrimination training, other drugs 

may be administered to see if they produce similar stimulus characteristics as the training 

drug. A correlation exists between drugs that generalize to ,19-THC and bind to the central 

cannabinoid receptor. The bicyclic compounds (Gold et al., 1992) and the 

aminoalkylindoles (Compton et al., 1992b) substitute for ,19-THC, whereas drugs from 

other classes do not (Balster and Prescott, 1992). Ultimately, the best model for evaluating 

a drug's reinforcing effects and predicting abuse liability is a drug self-administration 

paradigm. Animals do not readily self-administer ,19-THC (Harris, Waters and McLendon, 
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1974), and CP 55,940 does not maintain intravenous self-administration with a fixed-

interval schedule in rhesus monkeys (Mansbach et al., 1994 ). The lack of reinforcing 

effects of cannabis is consistent with the mild dependence properties in humans. On the 

other hand, it is possible that animals will self-administer cannabinoids once appropriate 

models are discovered. 

Cannabinoids also impair learning and memory in rodents (Carlini et al., 1970) and 

non-human primates (Ferraro and Grilly, 1973). In rats, the delayed match to sample 

memory task (Heyser, Hampson and Deadwyler, 1993), Lashley III maze (Carlini et al., 

1970) and the eight arm radial-maze (Nakamura et al., 1991) were used to measure 

memory disruption by cannabinoids. State-dependent learning studies have been used to 

examine the influences of drugs upon the process of conditioning, or memory formation 

and retrieval. State-dependent learning occurs when an association learned in one condition 

is more easily retrieved in that same condition. This paradigm has been useful for 

determining some of the disruptive effects of fl9-THC on memory and performance. The 

effects of fl9-THC upon state-dependent learning have been reported in tasks involving 

avoidance learning and conditioned suppression (farbe and Mathis, 1992). Tolerance does 

develop to the disruptive and subjective drug-state effects of fl9-THC (farbe, 1978; farbe 

and Mathis, 1992). 

The high numbers of cannabinoid receptors in the hippocampus may mediate the 

disruption in cognition (Herkenham etal., 1991c; Jansen etal., 1992; Thomas, Wei and 

Martin, 1992). Intrahippocampal administration of CP 55,940 produced a dose-dependent 

increase in the number of errors in the eight arm radial-maze test without elicitation of other 

pharmacological effects (Margulies and Hammer, 1991). Another study showed that the 

disruption in the delayed match to sample memory task induced by acute administration of 

fl9-THC was similar to that produced by damage to the hippocampus (Heyser, Hampson 

and Deadwyler, 1993). This disruption was associated with a specific decrease in 
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hippocampal cell discharge only during the encoding phase of the task; the effects were 

reversible within 24 hours of dosing. A number of other studies have examined the effects 

of cannabinoids on hippocampal ultrastructure, and are reviewed by Solowij (in press-a). 

While 119-THC, CP 55,940 and WIN 55,212-2 all impaired working memory in rats, 

anandamide failed to do so in either the eight arm radial-maze or the delayed nonmatching 

to sample memory task (Crawley et al., 1993). Lichtman et al. (1995) also found that CP 

55,940, 119-THC and WIN 55,212-2 administered systemically impaired spatial memory in 

rats, as assessed by the eight arm radial-maze, and retarded completion time; neither 

anandamide nor cannabidiol affected memory. Intrahippocampal administration of CP 

55,940 impaired memory, but did not inhibit completion time. The intrahippocampal 

effects of CP 55,940 appeared specific to cognition since no other pharmacological effects 

were produced. The inability of anandamide to disrupt memory in rats illustrates a possible 

difference between the endogenous ligand and other cannabinoids and underscores the 

importance of further comparisons (Crawley et al., 1993; Lichtman, Dimen and Martin, 

1995). In a series of chronic studies, rhesus monkeys were trained for one year to perform 

operant tasks before one year of chronic cannabis administration (Slikker et al., 1992). 

Task performance was impaired for over a week after cessation of use, but performance 

returned to baseline levels three weeks after cessation. The effects of chronic exposure 

were reversible with no apparent long term behavioral effects. 

Mechanism of Action 

Cannabinoids produce a myriad of pharmacological and behavioral effects which 

most likely involve numerous neural substrates that traverse the entire brain. The 

complexity of the pharmacological effects produced by cannabinoids is reflected in the 

above discussion on animal models. The most likely candidate for mediating the central 

effects of cannabinoids is a receptor mechanism. Discerning the mechanism of action for 
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cannabinoids transpired over several decades, and many difficulties encumbered the 

progress. Enantioselectivity provided initial evidence of receptor involvement, as 

discussed earlier. The high degrees of enantioselectivity in several of these analogs indicate 

a very specific mechanism of action, such as that involving a receptor. The lack of an 

appropriate radiolabeled ligand greatly hindered proving that cannabinoids exerted their 

interactions through a specific central receptor. Early attempts to identify a receptor in 

crude rat brain membranes by a ligand binding assay using [3H]-�8-THC failed (Harris, 

Carchman and Martin, 1978). Saturable binding did not result, and only 10% displaceable 

binding could be achieved. However, these investigators found displaceable binding in 

hepatocytes, which suggested that assessing receptor binding was feasible. 

The synthesis and radiolabeling of the potent bicyclic cannabinoid CP 55,940 

allowed identification of a receptor in rat brain membranes (Devane et al., 1988). Analysis 

of the data revealed a single binding site that possessed saturable and reversible high 

affinity binding. Other labeled cannabinoids, such as the dimethylheptyl (DMH) derivative 

of [3H]-l l-OH-�9-THC (Thomas, Wei and Martin, 1992) and [3H]-WIN 55,212-2 

(Compton et al., 1992a; Haycock et al., 1991), also bind to this receptor. This receptor 

displays selectivity for cannabinoids, as other classes of centrally acting compounds do not 

compete for cannabinoid binding (Howlett, Evans and Houston, 1992). Pharmacological 

potency of cannabinoids correlates well with their affinity for the cannabinoid binding site 

(Compton et al., 1993). In addition, binding affinities correlated with in vivo potency in 

the rat drug discrimination model and psychotomimetic activity in humans (Balster and 

Prescott, 1992). These findings suggest that this receptor mediates most of the central 

cannabinoid effects across several different animal species. 

According to autoradiographic studies, the distribution of the cannabinoid receptor 

is heterogeneous in several mammalian species, conserved and neuronally located 

(Herkenham et al., 1990; Herkenham et al., 1991b; Herkenham et al., 1991c). The 
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densest binding occurs in the basal ganglia (substantia nigra pars reticulata, globus 

pallidus, entopeduncular nucleus and lateral caudate putamen), and the molecular layer of 

the cerebellum. Binding in these regions may explain cannabinoid interference with 

movement. Intermediate levels of binding were found in the CA pyramidal cell layers of 

the hippocampus, the dentate gyrus and layers I and VI of the cortex. ,:i9-THC disrupts 

short-term memory in humans (Chait and Pierri, 1992). Thus, cannabinoid effects on 

memory and cognition are consistent with receptor localization in the hippocampus and 

cortex. The hippocampus stores memory and codes sensory information. The presence of 

cannabinoid receptors in regions associated with mediating brain reward (ventromedial 

striatum and nucleus accumbens) suggests an association with dopamine neurons. Sparse 

levels were detected in the brainstem, hypothalamus, corpus callosum and the deep 

cerebellum nuclei. Low levels of receptors in brainstem areas controlling cardiovascular 

and respiratory functions is also consistent with the low of lethality of cannabis. Other 

ligands, such as [3H]-WIN 55,212 (Jansen et al., 1992) and [3H]-l l-OH-Li9-THC-DMH 

(Thomas, Wei and Martin, 1992), generated similar localization patterns. Binding has also 

been found in the peripheral B lymphocyte-enriched areas including the marginal zone of 

the spleen, nodular corona of Peyer's patches and the cortex of the lymph nodes (Lynn and 

Herkenham, 1994). 

Prior to the characterization of a receptor, data demonstrated that cannabinoids 

inhibited adenylyl cyclase by probable interaction with an inhibitory G protein (Gi) 

(Howlett and Fleming, 1984 ). Researchers proposed that a cannabinoid receptor was 

linked to a Gi protein which, when activated, inhibited the activity of adenylyl cyclase. 

Adenylyl cyclase then cannot catalyze the conversion of ATP to the second messenger 

cyclic AMP (cAMP). The inhibition of adenylyl cyclase by cannabinoids took place in 

neuroblastoma cell membranes, rat brain slice membranes and cultured cerebellar neurons 

(Bidaut-Russell, Devane and Howlett, 1990; Howlett, Qualy and Khachatrian, 1986; 
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Pacheco, Ward and Childers, 1993). While extensive in vitro evidence exists for a 

cannabinoid receptor/adenylyl cyclase interaction, determining a pharmacological effect 

produced by adenylyl cyclase inhibition is difficult. Recently, Welch et al. (1995) 

demonstrated that pertussis toxin blocked the antinociceptive properties of cannabinoids in 

mice. Pertussis toxin prevents Gi proteins from interacting with receptors. This work 

suggests that the analgesic properties of cannabinoids might be due to cannabinoid receptor 

activation of a Gi protein. Furthermore, forskolin, which stimulates adenylyl cyclase, 

thereby producing increased levels of cAMP, and chloro-cAMP, a stable analog of cAMP, 

decreased cannabinoid-induced antinociception. Thus, both preventing Gi proteins from 

interacting with cannabinoid receptors and increasing the levels of cAMP interfered with the 

production of antinociception (Welch, Thomas and Patrick, 1995). These data suggest 

involvement of adenylyl cyclase in the antinociception of cannabinoids. 

Definitive evidence for a specific cannabinoid receptor became apparent when it was 

cloned (Matsuda et al., 1990). A clone isolated from a rat brain library had homology with 

other receptors that interacted with G proteins in the cell membrane. Yet, none of the 

traditional agonists of G proteins bound to this receptor clone. An identification 

breakthrough occurred with the discovery that the mRNA distribution of the receptor clone 

paralleled that of the cannabinoid receptor. Confirmation of the identity of the clone 

occurred when adenylyl cyclase was inhibited upon exposure to CP 55,940 and �9-THC in 

cells transfected with this clone. Adenylyl cyclase in non-transfected cells did not respond 

to cannabinoids. The human cannabinoid receptor was subsequently cloned and found to 

have almost identical homology to the rat receptor (Gerard et al., 1991). The cannabinoid 

receptor, abbreviated as CB I, belongs to a G protein-coupled receptor sub-family which 

includes the adrenocorticotropin and melanotropin receptors (Mountjoy et al., 1992). An 

amino-terminal variant, designated CB I A , of CB I has been discovered in brain and several 

peripheral tissues (Shire et al., 1995). CB I A results from alternative splicing of CB 1 
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resulting in deletion of 60 amino acid residues in the amino terminus. Recently, a distinct 

peripheral cannabinoid receptor, designated CB2, was identified in macrophages in the 

marginal zone of the spleen (Munro, Thomas and Abu-Shaar, 1993). Although CB I and 

CB2 share only approximately 40% homology, �9-THC and CP 55,940 demonstrate 

similar binding affinity for both receptor subtypes. The cloning of a peripheral receptor is 

consistent with previous data showing cannabinoid binding to mouse spleen cells 

(Kaminski et al., 1992) and to the rat immune system (Lynn and Herkenham, 1994 ). CB 1 

RNA transcripts have been identified in mouse spleen cells (Kaminski et al., 1992) and 

human peripheral blood lymphocytes (Bouaboula et al., 1993); CB2 RNA transcripts are 

expressed in the rat spleen (Munro, Thomas and Abu-Shaar, 1993). The role of this 

receptor in the spleen remains unknown. Slipetz et al. (1995) demonstrated that the human 

peripheral receptor (CB2) is functionally coupled to inhibition of adenylyl cyclase activity 

by a pertussis toxin-sensitive G-protein. A comparison of the pharmacology and signal 

transduction of the human CB I and CB2 receptors indicate that both receptor subtypes 

display similar pharmacological and biochemical properties, except CB2 did not couple to 

the modulation of Q-type calcium channels or inwardly rectifying potassium channels 

(Felder et al., 1995). The discovery of a second receptor raises the possibility that other 

receptors with unique functional roles may exist. 

Cannabinoids also produce effects through second messenger systems other than 

adenylyl cyclase. Initial evidence implicating calcium came from a study in which �9-THC 

inhibited calcium uptake following depolarization in mouse brain synaptosomes (Harris and 

Stokes, 1982). Electrophysiological studies showed that cannabinoids inhibited an omega 

conotoxin-sensitive, high voltage-activated N-type calcium channel (Caulfield and Brown, 

1992; Mackie and Hille, 1992). The inhibition of calcium channel activity was pertussis 

toxin-sensitive and stereospecific, suggesting a receptor-mediated process. In contrast, 

other data demonstrated that calcium influx in non-transfected cells occurred through a non-
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receptor process (Felder et al., 1992). However, high concentrations of cannabinoids were 

used, and calcium influx was also observed in non-transfected cells. Cannabinoids have 

also been reported to mediate an enhancement of A-type potassium channels in cultured 

hippocampal neurons through the cannabinoid receptor (Deadwyler et al., 1993). 

Several recent studies have explored the biological functions and gene regulation 

associated with the cannabinoid receptor. Bouaboula et al. ( 1995) discovered that CP 

55,940, in addition to the inhibition of cAMP accumulation, induces the expression of the 

immediate-early growth-related gene Krox-24 in astrocytoma cells. The transduction 

pathway between the cannabinoid receptor and Krox-24 involves a pertussis toxin-sensitive 

GTP-binding protein and is independent of cAMP metabolism (Bouaboula et al., 1995a). 

Krox-24 induction was inhibited by the tyrosine kinase inhibitor herbimycin A, suggesting 

that a protein kinase may lie on the route between Gi and Krox 24. The authors concluded 

that one receptor subtype (CB 1) may be coupled to two separate effector systems. The 

precise role of the cannabinoid receptor in astrocyte cells remains under investigation. In 

another study, cannabinoids induced phosphorylation and activation of mitogen-activated 

kinases (MAP) in CHO cells transfected with the human CB I receptor (Bouaboula et al., 

1995b). The signal transduction between CB1 and MAP kinases involves a pertussis­

toxin-sensitive GTP-binding protein and is independent of cAMP metabolism. The 

coupling of CB I and mitogenic signal pathway may explain the mechanism of action 

underlying cannabinoid-induced Krox-24 induction. Thus, activation of MAP kinase may 

be a candidate for regulation of Krox-24 induction. Das et al. (1995) found that a 

cannabinoid receptor-mediated signaling pathway is present in the mouse uterus, and this 

organ has the capacity to synthesize anandarnide. THC rapidly and transiently upregulated 

the gene encoding lactoferrin. Lactoferrin is an iron-binding glycoprotein proposed to be 

involved in immunomodulation and growth promotion. The authors propose that 
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pregnancy failures and fetal losses that have been reported with exposure to cannabinoids 

may be mediated via interactions with uterine cannabinoid receptors (Das et al., 1995). 

Other systems have been proposed for the signal transduction of cannabinoid 

receptor activation, though the evidence is not as compelling. Some data suggest that 

cannabinoids might activate the inositol phospholipid pathway. In this signaling pathway, 

a receptor activates a G protein (tentatively called Gp) that in turn activates phospholipase 

C. This enzyme cleaves PIP2 (phosphatidylinositol-bisphosphate) into inositol 

triphosphate (IP3) and diacylglycerol. Diacylglycerol activates protein kinase C, and IP3 

triggers calcium release from cellular compartments. One study presented evidence that ti9-

THC decreased the formation of myo-inositol triphosphate in pancreatic islet cells (Chaudry 

et al., 1988). This evidence implies that cannabinoids bind to a receptor that is linked to the 

inositol phospholipid pathway. Yet, another study demonstrated that protein kinase C 

distribution did not co-localize with cannabinoid binding (Herkenham et al., 1991a). If 

cannabinoids did bind to receptors that activated this pathway, one would assume that 

cannabinoid binding would co-localize with components, such as protein kinase C, of the 

inositol phospholipid system. Other researchers showed that cannabinoids also stimulated 

the release of arachidonic acid and phospholipid turnover (Felder et al., 1992). This effect 

lacked enantioselectivity, and high concentrations were necessary. Thus, these 

investigators ruled against receptor involvement (Felder et al., 1992). 

Based upon the discoveries over the past decade, one can postulate that a 

"cannabinoid" neurochemical system does exist. The function of this system and its 

interaction with other neurochemical systems remains unclear. It is well known that 

cannabinoids exert many of their actions by influencing several traditional neurotransmitter 

systems, as presented in other reviews (Dewey, 1986; Pertwee, 1988; Pertwee, 1992). 

The results from numerous studies suggest that several neurotransmitters and 

neuromodulators have a role in the neuropharmacology of cannabinoids. These substances 
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include acetylcholine (ACh), dopamine (DA), y-aminobutyric acid (GABA), histamine, 5-

hydroxytryptamine (5-HT), norepinephrine (NE), opioid peptides and prostaglandins 

(PGEs). The basis for some of the effects of cannabinoids are established through the 

interaction between cannabinoids and drugs that bind to other receptor types or drugs that 

alter the synthesis, storage, release or metabolism of transmitters and modulators (Pertwee, 

1992). Cannabinoids have been shown to enhance the formation of NE, DA and 5-HT. 

Cannabinoids also stimulated the release of DA from rat corpus striatum, nucleus 

accumbens and medial prefrontal cortex. GABA turnover is enhanced by cannabinoids. 

The most commonly studied behavioral effects of cannabinoids include hypothermia, 

antinociception and changes in locomotor activity. Results from drug interaction studies 

for catalepsy and depression of spontaneous locomotor activity suggest that these effects 

are mediated by ACh acting at muscarinic and nicotinic receptors, GABA acting at GABAA 

and GABAB receptors and PGEs. The extrapyramidal system probably plays a role in 

catalepsy since intrapallidal administration of 11-0H-b.8-THC produced catalepsy (Pertwee 

and Wickens, 1991). Evidence exists that catalepsy results from interaction of 119-THC 

with neurotransmitter systems in the basal ganglia (Gough and Olley, 1977; Gough and 

Olley, 1978). Hypothermia in rats and mice has been attributed to by DA, NE, 5-HT, 

GABA, histamine and opioid peptides. There is also evidence that alteration in 

thermoregulation occurs by the hypothalamus (Fitton and Pertwee, 1982) and brainstem 

activity (Hosko, Schmeling and Hardman, 1981 ). Possibly, enhanced serotonergic 

transmission (Davies and Graham, 1980) and modulated autonomic activity (Rosenkrantz, 

1983) produce hypothermia. Results from hypothermia studies are often inconsistent, thus 

definite conclusions cannot be drawn about the neuronal pathway involved in cannabinoid­

induced antinociception (Pertwee, 1992). Several endogenous compounds serve to inhibit 

nociception (NE, 5-HT, ACh, GABA, opioid peptides, PGE1 and PGD2), and some of 

these compounds interact with cannabinoids to produce antinociception. 



www.manaraa.com

26 

An inwardly rectifying potassium channel co-expressed with the neuronal 

cannabinoid receptor in Xenopus oocytes was activated by WIN 55,212-2 (Henry and 

Chavkin, 1995). The precise role of calcium or potassium in the physiological actions of 

cannabinoids remains unknown. Cannabinoids also affect serotonin (5-HT) receptors. 

Anandamide, Win 55,212-2 and CP 55,940 inhibited the 5-HT3-induced current in rat 

nodose ganglion neurons in a concentration dependent manner (Fan, 1995). 5-HT3 

receptors may be involved in cannabinoid-induced analgesia, antiemesis and possibly other 

behavioral effects. 

Some experiments support the involvement of catecholamines, 5-HT, PGE1 and 

opioid peptides. Interpretation of the actions of cannabinoids on neurotransmitter systems 

is often difficult since evidence exists that cannabinoids both inhibit and stimulate neuronal 

uptake. Relatively few studies have examined the long term-exposure of cannabinoids on 

brain neurotransmitter and neuromodulator levels. As reviewed by Solowij (in press-a), 

recent evidence suggests that few, if any, irreversible effects on brain chemistry exist due 

to !i9-THC administration. Although it appears that neurotransmitters are altered to 

produce some of the effects of cannabinoids, cause and effect have not been clearly 

established. 

Anandamide as an Endogenous Ligand 

The discovery of a receptor raised the question about the possible existence of an 

endogenous ligand and a separate cannabinoid neurochemical system. Due to the high 

lipophilicity of cannabinoids, Devane et al. ( 1992) searched for a compound in lipid 

extracts from porcine brain. They isolated anandamide, which competed for cannabinoid 

receptor binding and, like !i9-THC, inhibited electrically stimulated contractions in the 

murine vas deferens (Devane et al., 1992). Anandamide, a fatty acid derivative, binds both 

to the cannabinoid receptor of the rat brain (Devane et al., 1992) and to murine Ltk- cells 
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transfected with the human cannabinoid receptor (Childers, Sexton and Roy, 1994; Felder 

et al., 1993). Anandamide produced similar pharmacological effects to t19-THC, such as 

antinociception, catalepsy, hypomotility and hypothermia (Fride and Mechoulam, 1993), 

and anandamide inhibited adenylyl cyclase (Felder et al., 1993) and N-type calcium 

channels (Mackie, Devane and Hille, 1993). One study found that the effect of anandamide 

on adenylyl cyclase was region-specific, with maximal inhibition occurring in the 

cerebellum and striatum (Childers, Sexton and Roy, 1994 ). A comparison between 

anandamide and t19-THC revealed that anandamide was 4 to 20 fold less potent and had a 

shorter duration of action than t19-THC (Smith et al., 1994). Both anandamide and t19-

THC affected the hypothalamo-pituitary-adrenal axis in a similar manner (Weidenfeld, 

Feldman and Mechoulam, 1994 ). Intracerebroventricular administration of anandamide 

decreased CRF levels in the median eminence and increased serum ACTH and 

corticosterone levels. Anandamide blocks adenylyl cyclase at the frog neuromuscular 

junction, providing evidence for the presence of a cannabinoid receptor at the motor nerve 

(Van der Kloot, 1994 ). Gap-junction conductance in striatal astrocytes is inhibited by 

anandamide, suggesting that anandamide may control intercellular communication in 

astrocytes and therefore neuron-glial interactions (Venance et al., 1995). 

Anandamide belongs to a widespread class of natural products, the N­

acylethanolamines, whose precise biological role is not fully characterized. In pig and 

bovine brains, anandamide composes about 1 % of the total N-acylethanolamines (Schmid 

et al., 1995). Several months after its discovery, N-arachidonic acid-2-hydroxyethylamide 

( anandamide) was isolated from calf brain in an effort to find endogenous regulators of L-

type calcium channels (Johnson et al., 1993). Anandamide displaced the binding of a 

calcium channel antagonist, 1,4-dihydropyridine, in cardiac and cortical membranes. This 

independent finding serves to strengthen the hypothesis that anandamide is a chemical 

modulator. 
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One of the qualifications of a neurochemical system is the existence of a path for 

synthesis and degradation of a ligand. Deutsch and Chin (1993) showed that anandamide 

was rapidly taken into neuroblastoma and glioma cells. Synthesis was achieved in brain 

homogenates by incubating arachidonate with ethanolamine. Anandamide was hydrolyzed 

to arachidonic acid and ethanolamine by an amidase (anandamide amidohydrolase), which 

resides in the membrane fractions. Degradation also occurred in brain, kidney, liver and 

lung homogenates (Deutsch and Chin, 1993). The enzyme inhibitor phenylmethylsulfonyl 

fluoride (PMSF) prevented degradation, but not synthesis, of anandamide. Brain 

aminohydrolase activity is selective for anandamide and is enriched in areas of the brain 

with high density of cannabinoid receptors, such as the globus pallidus and hippocampus, 

which suggests that this enzyme activity may be involved in the inactivation of anandamide 

at its sites of action (Desarnaud, Cadas and Piomelli, 1995). Another group also found that 

the distribution of anandamide hydrolytic activity correlated with the distribution of 

cannabinoid-receptor binding sites; the cerebellum, cerebral cortex and hippocampus 

exhibited the highest metabolic activity, while the brainstem and white matter exhibited the 

lowest activity (Hillard et al., 1995). The aminohydrolase was solubilized and purified 

from the microsomal fraction of porcine brain (Ueda et al., 1995). Based upon their 

results, Ueda et al. ( 1995) suggested that the anandamide aminohydrolase and synthase 

activities were attributable to a single enzyme protein. 

Evidence also exists that anandamide can be metabolized by cytochromes P450s. 

Mouse hepatic P450s, which are known to oxidize arachidonic acid, were found to 

metabolize anandamide into 10 different metabolites (Bomheim et al., 1993). Pretreatment 

of mice with P450 inducers, such as dexamethasone, phenobarbitol and 3-

methylcholanthrene, resulted in increased hepatic microsomal formation of several of the 

anandamide metabolites (Bomheim et al., 1995). Antibodies against P450 3A prevented 

the formation of several of these metabolites. Metabolism of anandamide by brain 
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rnicrosomes resulted in the formation of two metabolites, only one of which was partially 

inhibited by antibodies to P450 3A. The physiological consequences of P450-mediated 

anandarnide metabolism remains unknown. 

Two possible mechanisms for the formation of anandamide have been proposed. 

Devane and Axelrod (1994) and Kruszka and Gross (1994) propose that anandarnide is 

formed by the enzymatically catalyzed condensation of arachidonic acid with ethanolarnine. 

Both groups demonstrated the formation of anandarnide by brain membrane preparations 

incubated with arachidonic acid and ethanolamine, and both laboratories found that 

arachidonic acid was the preferred substrate for the enzyme, and the reaction was specific 

for ethanol amine (Devane and Axelrod, 1994; Kruszka and Gross, 1994 ). Kruszka and 

Gross ( 1994) suggested that the condensation reaction is independent of coenzyme A and 

ATP. They also propose that arachidonic acid may react with a cysteine at the active center 

of the enzyme to form an arachidonyl-thiol ester enzyme intermediate. Interestingly, 

Devane and Axelrod (1994) found that anandamide synthase activity was highest in the 

hippocampus, followed by the thalamus, cortex and striatum, and lowest in the cerebellum, 

pons and medulla. The ability of brain tissue to enzymatically synthesize anandarnide and 

the presence of receptors specific for anandamide suggest the existence of anandamide-

containing neurons. Di Marzo and colleagues (1994) propose an alternative biosynthetic 

mechanism. They suggest that anandarnide formation occurs through a phosphodiesterase-

mediated cleavage of a novel phospholipid precursor, N-a r a c h i d o n o y l­

phosphatidylethanolamine (Di Marzo et al., 1994). In primary cultures of rat neurons, 

stimulation with the calcium ionophore ionomycin, which increases synaptic activity, led to 

the formation of anandarnide. The newly synthesized anandamide is released into the 

external medium, where it can be inactivated by a rapid, saturable uptake mechanism. The 

findings of Di Marzo et al. (1994) suggest that anandamide biosynthesis is under 

physiological control. The condensation of arachidonic acid and ethanolamide has been 
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demonstrated to occur at conditions that are non-physiological, thus giving support to the 

pathway proposed by Di Marzo et al. (1994). 

The establishment of a cannabinoid receptor and an endogenous ligand with 

biosynthetic and degradative pathways suggests the possible presence of a distinct 

neurochemical system. Anandamide may represent one member of a family of endogenous 

compounds (Figure 4). Two other compounds, homo-y-linolenylethanolamide (20:3, n-6) 

and docosatetraenylethanolamide (22:4, n-6), isolated from bovine brain, also competed for 

cannabinoid receptor binding (Barg et al., 1995; Hanus et al., 1993) and inhibited the 

electrically evoked twitch response of the mouse isolated vas deferens (Pertwee et al., 

1994). Both compounds inhibited adenylyl cyclase, and this inhibition was blocked by 

pertussis toxin, indicating involvement of pertussis toxin-sensitive GTP-binding proteins 

(Barg et al., 1995). The two new anandamides exerted similar behavioral effects to those 

observed with fi9-THC, including inhibition of motor activity, hypothermia, catalepsy and 

antinociception (Barg et al., 1995). The maximal effect obtained with the two anandamides 

in the behavioral tests were smaller than the maximal effects of fi9-THC. Under certain 

conditions, the anandamides may function as partial agonists. In a separate study, vasa 

deferentia showed tolerance to the inhibitory effects of anandamide (20:3, n-6) and 

anandamide (22:4, n-6) when obtained from mice pretreated with fi9-THC (Pertwee et al., 

1994). Recently, another endogenous compound, 2-arachidonyl glycerol, was isolated 

from canine intestines (Figure 4) (Mechoulam et al., 1995). This compound bound to CB 1 

and CB2, though with greater affinity to CB 1, and produced the typical cannabimimetic 

effects in mice. 2-Arachidonyl glycerol inhibited electrically evoked contractions of mouse 

isolated vasa deferentia, but was less potent and efficacious than fi9-THC. In addition, 

another group has reported that 2-arachidonyl glycerol bound to rat brain synaptosomal 

membranes, and its levels in the rat brain were about a thousand times higher than that of 

anandamide (Sugiura et al., 1995). Mead ethanolamide has also been proposed as a novel 
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eicosanoid agonist for central and peripheral cannabinoid receptors (Priller et al., 1995). 

Mead acid accumulates during periods of dietary fatty acid deprivation in rats. Priller et al. 

( 1995) found that the chemically synthesized ethanolamide of mead acid bound to both CB 1 

and CB2 receptor subtypes, inhibited cAMP accumulation and N-type calcium currents in 

cells expressing the CB I receptor. Since anandamide is structurally related to the 

leukotrienes and prostaglandins, Hampson et al. ( 1995) assessed anandamide as a substrate 

for rat brain lipoxygenase. Lipoxygenase enzymes are important for the biosynthesis of 

eicosanoids, including a number of potent oxygenated metabolites such as leukotrienes, 

lipoxins and hepoxilins. Metabolites of this enzyme have been demonstrated to modulate 

neurotransmission. Anandamide did serve as a substrate for rat brain lipoxygenase. One 

of its metabolites, 12-hydroxyanandamide, had an affinity twice that of anandamide for the 

central cannabinoid receptor (Hampson et al., 1995). 12-Hydroxyanandamide inhibited 

both forskolin-stimulated cAMP synthesis and the murine vas deferens twitch response, 

though it was less potent than anandamide. From these studies, a complicated picture is 

emerging of anandamide interacting with several different systems. Future research must 

answer numerous questions in order to advance our understanding of the physiology and 

neurochemistry of anandamide in the brain. Why does such a system exist? What is its 

physiological role? What would be the physical manifestations of an imbalance in this 

system? 

A Novel Cannabinoid Receptor Antagonist 

The recent discovery of a cannabinoid antagonist provides researchers with a 

valuable probe for elucidating the physiological and pathophysiological roles of the 

proposed cannabinoid system. The antagonist, SR 141716A, has high affinity for the CB 1 

receptor, but not the CB2 receptor (Figure 5) (Rinaldi-Carmona et al., 1994). In vitro, it 

antagonized both cannabinoid-induced inhibition of adenylyl cyclase activity in rat brain 
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Figure 5. Structure of SR 141716A, the antagonist for the cannabinoid receptor. 
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membranes and mouse vas deferens contractions; in vivo it antagonized behavioral effects 

of cannabinoid agonists (Rinaldi-Carmona et al., 1994). SR 141716A also antagonized the 

discriminative stimulus effects of both t,9-THC in rats and rhesus monkeys (Wiley et al., 

1995b) and CP 55,940 in rats (Wiley et al., 1995a). This compound is the first reliable 

antagonist of cannabinoid discrimination and might be useful in blocking or reversing 

cannabis intoxication in humans. SR l4 l 716A blocks activation of krox-24 gene 

expression in CHO cells transfected with the human CB I receptor (Bouaboula et al., 

1995a) and prevents cannabinoid-mediated blockade of long-term potentiation in the rat 

hippocampal slice (Collins, Pertwee and Davies, 1995). 

Animal Tolerance and Dependence 

Tolerance develops to the pharmacological effects of cannabinoids in a variety of 

animal species, including pigeons, rodents, dogs, monkeys and rabbits. Several review 

articles discuss the issues of tolerance and dependence (Compton, Dewey and Martin, 

1990; Kaymakcalan, 1973; McMillan, Dewey and Harris, 1971; Wikler, 1976). Tolerance 

has occurred to antinociception (Martin, 1985), anticonvulsant activity (Colasanti, 

Lindamood and Craig, 1982), catalepsy (Pertwee, 1974), depression of locomotor activity 

(Karler, Calder and Turkanis, 1984), hypothermia (Thompson et al., 1974), hypotension 

(Birmingham, 1973), corticosteroid release (Miczek and Dihit, 1980), ataxia in dogs 

(Martin et al., 1976) and schedule-controlled behavior (McMillan et al., 1970). Tolerance 

does not develop to all cannabinoid effects, such as ACTH secretion (Dewey, Peng and 

Harris, 1970). Often the levels of tolerance are markedly high with reported instances of 

100-fold development. Other psychoactive cannabinoids, such as t,8-THC, the I!­

hydroxy metabolites, nantradol and nabilone also produce tolerance (Kosersky, McMillan 

and Harris, 1974; Watanabe, Yamamoto and Yoshimura, 1983). Interestingly, tolerance 

also has been demonstrated in cultured cells. Tolerance developed to cannabinoid-induced 



www.manaraa.com

35 

stimulation of prostaglandin E2 production and arachidonate release (Burstein, Hunter and 

Renzulli, 1985) and to cannabinoid-inhibition of adenylyl cyclase activity (Dill and 

Howlett, 1988). 

The precise mechanism for the development of tolerance remains unknown. 

Tolerance to drugs usually occurs by two main methods: changes in pharmacokinetics or 

pharmacodynarnics. Several lines of evidence indicate that pharmacokinetics (absorption, 

distribution, metabolism and excretion) probably plays a minor role in tolerance production 

(Dewey et al., 1973; Martin et al., 1976; Siemens and Kalant, 1974). Thus, a 

pharmacodynamic event, such as receptor down-regulation, receptor conformational 

change and receptor internalization, more than likely attributes to tolerance development. 

These three events result in decreased receptor-ligand interaction. Changes at the 

cannabinoid receptor level following exposure to cannabinoids for a long period of time 

could result in conformational changes in the receptor which would produce an altered 

receptor structure, to which the ligand could not bind. Another possible pharmacodynarnic 

event is receptor internalization. When receptor internalization occurs, receptors on the cell 

membrane are removed into the cytoplasm where they are either degraded or recycled. The 

number of receptors at the cell surface is decreased; therefore, binding to the receptor is 

decreased. Several groups have demonstrated cannabinoid receptor down-regulation in 

cannabinoid-tolerant animals (Oviedo, Glowa and Herkenham, 1993; Rodriguez de 

Fonseca et al., 1994 ). Receptor down-regulation occurs when the number of receptors 

made by the cells is reduced. Oviedo et al. (1993) presented data suggesting that 

cannabinoid tolerance was due in part to agonist-induced receptor down-regulation. 

Altered binding in animals treated acutely with �9-THC or CP 55,940 resulted from 

changes in affinity; in chronically treated animals, changes in binding were attributed to a 

lowering of binding capacity. Rodriguez de Fonseca et al. (1994) found that behavioral 

tolerance developed in rats chronically treated with �9-THC. This tolerance was 
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accompanied with decreases in binding in the striatum and limbic forebrain. In a recent 

study, cannabinoid binding actually increased in brain areas, such as the cerebellum and 

hippocampus, after acute or chronic exposure to either anandamide or �9-THC (Romero et 

al., 1995). No changes were detected in the limbic forebrain or the medial basal 

hypothalamus, and after chronic exposure receptors were downregulated in the striatum. 

Interestingly, another study noted that cannabinoid receptor properties were not irreversibly 

altered by chronic exposure in either rat brain 60 days following 90 days of administration 

of �9-THC or in monkey brain seven months after one year of exposure to cannabis smoke 

(Westlake et al., 1991 ). Receptor down-regulation could either result from or cause 

alterations in gene transcription. Another study found that although a twenty-seven-fold 

behavioral tolerance to �9-THC was observed, neither receptor binding nor mRNA levels 

in whole brain changed (Abood et al., 1993). Fan et al. (1996) have demonstrated that an 

increase in cannabinoid receptor mRNA accompanies the down-regulation of the receptor in 

the cerebellum of tolerant mice. However, cause and effect has not been established (Fan 

et al., 1996). 

In light of the fact that most drugs which are used for recreational purposes produce 

some form of physiological dependence and that development of tolerance frequently 

occurs in conjunction with dependence, it would seem likely that physical dependence 

would also develop following chronic exposure to cannabinoids. One of the most common 

methods for demonstrating dependence, particularly for drugs which do not have a long 

duration of action, is to abruptly terminate chronic administration of the agent and observe 

the ensuing behavioral sequelae. Efforts to conduct abrupt withdrawal studies with 

cannabinoids have produced conflicting results. McMillan et al. ( 1971) failed to detect 

withdrawal symptoms upon termination of chronic administration of cannabinoids. A few 

reports have noted that abrupt cessation of cannabinoids produce certain behavioral 

changes. These alterations include increased grooming, motor activity (Kaymakcalan, 
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Ayhan and Tulunay, 1977), aggression (Beardsley, Balster and Harris, 1986) and 

susceptibility to electroshock-induced convulsions (Karler et al., 1984). Yet, re­

administration of a cannabinoid did not reverse these effects, and other laboratories could 

not duplicate withdrawal. Therefore, the capacity of cannabinoids to produce abrupt 

withdrawal remains ambiguous. A second approach for assessing dependence is to 

precipitate an abstinence syndrome in chronically treated animals by administering an 

antagonist. The lack of a cannabinoid antagonist prompted earlier investigators to attempt 

precipitated withdrawal with opioid antagonists. Naloxone was reported to precipitate 

withdrawal in rats treated chronically with �9-THC, although the symptomatology differed 

somewhat from that described for opioid dependence (Hirschhorn and Rosecrans, 1974; 

Kaymakcalan, Ayhan and Tulunay, 1977). Fortunately, a selective and highly potent 

cannabinoid antagonist was developed recently (Rinaldi-Carmona et al., 1994). This 

antagonist, SR 141716A, has proven to be effective in precipitating cannabinoid 

withdrawal. In one study rats were chronically infused with �9-THC for four days and 

then administered the antagonist (Aceto et al., 1995). A marked change in the �9-THC-

infused animals was evident approximately 10 minutes after the intraperitoneal injection of 

SR 141716A, and these effects subsided within an hour. The behavioral signs included 

head shakes, facial tremors, tongue rolling, biting, wet-dog shakes, eyelid ptosis, facial 

rubbing, paw treading, retropulsion, immobility, ear twitch, chewing, licking, stretching 

and arched back. The signs of facial rubbing and wet-dog shakes were quantified and 

found to be statistically greater than that observed in vehicle-infused rats. Similar results 

were observed by Tsou et al. ( 1995) who repeatedly injected rats with �9-THC prior to an 

intraperitoneal challenge with SR 141716A. They observed that the most striking aspect of 

the withdrawal syndrome was the rapidly alternating sequences of aborted fragments of 

organized behavior (Tsou, Patrick and Walker, 1995). The syndrome may have resulted 

from alterations in the physiology of neural circuits in the basal ganglia. These studies 
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provide convincing evidence that cannabinoids can produce physical dependence. The 

challenge is to understand the relationship between these animal models and the use pattern 

of cannabinoids in humans. A high priority for future research is to identify the neuronal 

systems which subserve the cannabis withdrawal syndrome. Manipulation of these 

systems may provide a means for treating individuals who seek assistance in terminating 

their cannabis use. 

Pharmacokinetics and Detection 

Cannabis is usually smoked as a 0.5-1 g cigarette. The THC dose necessary to 

produce pharmacological effects in humans ranges from 2 to 22 mg for smoking (Martin, 

1986). If only 10-25% of available THC enters the circulation when smoked, then the 

dose range is actually 0.2-4.4 mg. Animal studies have shown that the THC level in the 

brain is very small, with 1 % of the administered dose available at peak concentration 

(Agurell et al., 1986). If humans have a similar distribution, then only 2-44 µg THC 

would penetrate the brain. Following inhalation, Ll9-THC is rapidly absorbed into the 

bloodstream and redistributed. Initial metabolism takes place in the lungs and liver to 11-

hydroxy-THC (11-0H-THC). This metabolite is somewhat more potent than Ll9-THC and 

more readily crosses the blood-brain barrier. More extensive metabolism in the liver 

converts 11-0H-THC to many inactive metabolites, including 11-nor-carboxy-Ll9-THC 

(THCCOOH), the most abundant metabolite in plasma and urine. A study by Huestis et al. 

(1992) provides the first complete pharmacokinetic profile of THC and the appearance of 

metabolites during cannabis smoking. THC levels increase rapidly, peak prior to the end 

of smoking and quickly dissipate. Peak 11-0H-THC levels are lower than THC levels and 

occur immediately at the end of smoking. THCCOOH is detected minutes after smoking, 

and levels plateau for an extended period (Huestis, Benningfield and Cone, 1992). Ll9-

THC can be detected in blood at 7 and 18 ng/rnl after a single inhalation of smoke from a 
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1.75 and a 3.55% THC marijuana cigarette, respectively (Huestis et al., 1992). An entire 

cigarette will produce peak THC levels greater than 100 ng/ml (Cocchetto et al., 1981; 

Huestis et al., 1992; Lemberger et al., 1972; Ohlsson et al., 1980; Perez-Reyes, Owens 

and Di Guiseppi, 1981). Cannabis is also often consumed orally. Similar pharmacological 

effects to smoking result, but differences exist in the rate of onset and in the blood levels of 

cannabinoids. After oral ingestion, the levels of t19-THC gradually increase over a period 

of 4 to 6 hours causing a delay in psychoactive effects (Wall et al., 1983). 11-0H-THC is 

present in higher concentrations in blood after the oral route (Cone and Huestis, 1993). 

Subsequent release of t19-THC from lipid-rich tissues occurs slowly and produces a 

long elimination half-time. Estimates of elimination range from 18.7 hours to 4.1 days; the 

variability in half-life measures is due to the dependence of this measure upon assay 

sensitivity and timing of blood measurements (Cone and Huestis, 1993). Less variability 

is found in measurements of clearance. Recent data using sensitive detection techniques 

suggest that the elimination half-life in chronic users is actually three to five days 

(Johansson et al., 1988). Conflicting reports exist for the clearance time of THC in light 

and chronic cannabis users. Lemberger et al. ( 1978) reported that the time to clear half of 

the dose from the body in a daily user (19 to 27 hours) is twice as fast than in an 

inexperienced user. Another study did not find significant differences in clearance rates 

between heavy and light users (Ohlsson et al., 1982). 

Since cannabinoids affect motor skills, having a reliable measurement of 

impairment similar to the breath test for alcohol intoxication is desirable. However, 

establishing a relationship between blood levels of THC or its metabolites and the degree of 

impairment has been difficult. This difficulty relates to the delay between peak blood 

concentrations and peak drug effects (Huestis et al., 1992). Immediately after smoking, 

plasma levels are high while effects are low; whereas at later times, the situation reverses. 

Therefore, blood levels of THC could be useful for predicting impairment if the mode of 
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administration and time of use is known. In the absence of this critical information, 

attempts to develop 'cut-off levels would have to be very conservative (i.e., the values 

would have to be rather high). Recently, models have been proposed to predict the time of 

cannabis exposure from plasma concentrations of THC and THCCOOH (Cone and 

Huestis, 1993). This model allows prediction of the elapsed time since cannabis use based 

on analysis from a single plasma sample. Additional research is needed to clarify the 

relationship between blood cannabinoid levels and behavioral effects. 

Legal and moral concerns in the United States have led to increased efforts to detect 

cannabis use in the work place and in individuals whose performance is critical for general 

public safety. Initial screening tests are performed by immunoassay for the detection of 

cannabinoids in urine, and positive samples are verified by gas chromatography/mass 

spectrometry analysis. These assays were developed to detect the primary cannabinoid 

excreted in urine, which is THCCOOH. The development of "quick tests" for the detection 

of drugs of abuse results from the growing demand for simple, rapid and inexpensive on­

site drug testing. The EZ-SCREEN® immunoassay test is highly sensitive for THCCOOH 

and has low cross-reactivity with other cannabinoids (Jenkins et al., 1993). One of the 

most frequently asked questions is the length of time required for urinary levels to fall 

below detectable limits following smoking of a single cannabis 'joint'. Typically, 

THCCOOH can easily be detected two to three days following smoking of a single 

cannabis cigarette. Passive inhalation has become an attractive argument for explaining the 

presence of urinary cannabinoids. Yet Cone et al. ( 1990) demonstrated that Herculean 

efforts were required in order for passive inhalation to produce detectable urinary levels of 

THCCOOH. Measurement of urinary levels of cannabinoids should be conducted solely 

for the purpose of determining whether an individual has used cannabis. Attempts at 

assessing impairment would require considerable knowledge of the circumstances 

surrounding the last use. 



www.manaraa.com

Effects on Organ Systems 

Central Nervous System 

41 

Since the brain is recognized as a principle target for cannabis, research has been 

conducted to study the effects of cannabinoids upon the central nervous system that extend 

beyond neurochemistry. The effects of cannabis on electroencephalographic (EEG) 

readings, cerebral blood flow (CBF) and brain morphology have been studied, as reviewed 

by Hall et al. (1994) and Solowij (in press-a). Long term alterations in EEG recordings 

have been observed in cats, rats and monkeys exposed to cannabinoids (Hall, Solowij and 

Lemon, 1994). In one chronic study, monkeys were exposed to cannabis smoke for six 

months (Heath et al., 1980). Serious subcortical EEG alterations were noted, with the 

amygdala, hippocampus and septa) region most profoundly affected. Quantitative EEG 

studies of cannabis in humans have been performed since the 1970s, and most reported an 

increase in alpha power (usually relative power or alpha abundance), decreased alpha 

frequency and a decrease in beta activity following acute exposure to THC (Fink et al., 

1976). These results are consistent with a state of drowsiness. Struve and Staumanis 

( 1990) provide a review of the acute and chronic effects of cannabis use on the EEG 

recording and evoked potential studies in humans. Recently, Struve et al. (1994) reported 

that THC produced significant elevations in absolute alpha power, relative alpha power and 

interhemispheric alpha coherence over frontal and frontal-central areas in chronic users. 

They referred to this phenomenon as alpha hyperfrontality. In users with very long 

exposure(> 15 years) EEGs were characterized by increases in frontal-central theta activity 

in addition to hyperfrontality of alpha. These findings suggest that there may be a gradient 

of quantitative EEG change associated with long term cannabis exposure. Infrequent use 

did not produce persistent EEG change. With daily use, the topographic EEG became 

characterized with hyperfrontality of alpha. At some unknown point after cumulative 

exposure there was a downward shift in maximal EEG spectral power from the mid alpha 
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range to the upper theta/low alpha range. Exposure of 15-30 years resulted in increases of 

absolute power, relative power and coherence of theta activity over the frontal-central 

cortex. The relationship between EEG changes and performance on neuropsychological 

tests is not known. 

Studies also have examined the effects of cannabis in humans upon two measures 

of brain activity, cerebral blood flow and cerebral metabolic rate. Drug-induced changes in 

these parameters are thought to represent a change in brain function (Mathew and Wilson, 

1993). One study showed that acute cannabis exposure in inexperienced users produced a 

global CBF decrease, whereas in experienced users CBF increased in both hemispheres, 

but primarily in the frontal and left temporal regions. The authors attributed the decrease in 

CBF in inexperienced subjects to their increased anxiety following cannabis administration, 

and the increase in CBF in experienced users was attributed to pharmacological effects of 

cannabis (Mathew and Wilson, 1992). The increased blood flow correlated with the levels 

of intoxication (Mathew et al., 1992). Acute t19-THC increased cerebral metabolic rate in 

humans and animals, though in humans the effects on the metabolic rate are probably 

limited to specific brain areas such as the cerebellum or prefrontal cortex (Margulies and 

Hammer, 1991; Volkow and Fowler, 1993). One study compared the acute effects of 

cannabis on three control subjects (who had used cannabis no more than once or twice per 

year) and three chronic subjects (who had used cannabis at least twice per week for at least 

ten years) (Volkow and Fowler, 1993). Control subjects had an increase in metabolic 

activity in the cerebellum and prefrontal cortex, and the subjects' subjective sense of 

intoxication correlated with the degree of increase in metabolism in the cerebellar cortex. 

Chronic users showed less change in regional metabolism and reported fewer subjective 

effects, perhaps reflecting tolerance to the effects of cannabis. 
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Immune System 

With efforts to use either cannabis or synthetic cannabinoids for therapeutic 

purposes, one should consider the potential effects on the immune system, especially in 

patients with a compromised immune system, as reviewed by Hall et al. ( 1994 ). 

Determining if cannabinoids impair the immune system is complicated by several factors. 

First, the majority of the studies have been conducted in vitro with animal and human cell 

cultures or in vivo in animals. Extrapolating these results to humans is further complicated 

by the very high doses of cannabinoids used in the studies. Second, the few in vivo 

human studies have produced conflicting results. Third, very few epidemiological studies 

assessing disease susceptibility in heavy chronic cannabis users have been conducted. 

Cannabinoids probably exert their actions through both cannabinoid receptor and 

non-receptor, or nonspecific, mechanisms, since high concentrations are often needed to 

elicit an effect. A nonspecific indication of an effect on the immune system is a decrease in 

weight of lymphoid organs (Munson and Fehr, 1983). Cannabinoids reduced the weight 

of the thymus in monkeys, and in high doses cannabinoids affected the function of the stem 

cells and reduced the size of the spleen in rodents (Munson and Fehr, 1983). 

The effects of cannabinoids on human, monkey and rodent macrophages have been 

studied both in vivo and in vitro. Cannabinoids can affect a macrophage's morphology, 

phagocytic and spreading ability, superoxide production and tumor necrosis factor and 

interleukin release. Rat alveolar macrophages were only moderately affected following 30 

days exposure to cannabis smoke, with changes in morphology, superoxide production 

and oxygen consumption (Davies, Sornberger and Huber, 1979). Human pulmonary 

alveolar macrophages obtained from cannabis smokers displayed a suppression of 

superoxide production (Sherman et al., 1991). Macrophages from monkeys exposed to 

cannabis smoke for up to one year had altered morphology, including an increase in the 

number of vacuoles, and protein expression (Cabral et al., 1991). THC adversely affected 
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the phagocytic and spreading ability of macrophages from mouse peritoneal cultures 

(Lopez-Cepero et al., 1986), and similar results occurred in human mononuclear phagocyte 

cultures (Spector and Lancz, 1991 ). Cytokine, or interleukin, production in macrophages 

was also altered by THC. Interleukin 1 (ILi) bioactivity and release were increased (Klein 

and Friedman, 1990; Shivers et al., 1994), and antiviral factor production was suppressed 

(Cabral and Vasquez, 1992). Since tumor necrosis factor (TNF) levels were either 

increased (Shivers et al., 1994) or decreased (Fischer-Stenger, Pettit and Cabral, 1993; 

Zheng, Specter and Friedman, 1992) depending upon the type of cell culture, the effect of 

cannabinoids on cytokine levels is probably modulatory. 

The effects of cannabinoids on the humoral immunity (production of B 

lymphocytes) and cell-mediated immunity (T lymphocyte production) are inconsistent. 

Conflicting in vivo studies were generated in the 1970s, with cannabinoids either 

suppressing human and monkey leukocyte numbers and functions (Gupta, Grieco and 

Cushman, 1974; Nahas et al., 1974) or not affecting lymphocytes (Lau et al., 1976; 

Rachelefsky et al., 1976; Silverstein and Lessin, 1974). These studies were often 

performed with human patients without controlling lifestyle factors. In monkey studies 

conducted during the same period, blood cell mitogen responses and serum antibody (IgG 

and IgM) levels were significantly reduced in monkeys chronically treated with THC for 

six months (Daul and Health, 1975). In another study, rhesus monkeys treated with THC 

for three weeks had elevated neutrophil levels; lymophocytes were not affected (Silverman 

et al., 1982). A more recent study reported that in human outpatient cannabis abusers, the 

T cell CD4/CD8 ratio increased (Yv all ace et al., 1988). CD4 and CDS are cell-cell adhesion 

glycoproteins on the surface of T cells that act to stabilize the binding T cell receptors and 

antigen complexes on the target cell. However, Dax et al. ( 1989) demonstrated that in 

institutionalized patients receiving small amounts of cannabis for three weeks, white blood 

cell and subset lymphocyte counts and killer cell activity were unaffected. When the 
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amount of THC and length of exposure time increased, IgG antibody levels decreased; IgD 

antibody levels increased, and IgA and lgM levels were unaffected (Nahas and Ossweman, 

1991). From these studies, one can conclude that cannabis smoking appears to produce 

moderate disturbances in lymphocyte activity in humans and monkeys in vivo. However, 

the clinical relevance of these findings are uncertain (Hollister, 1988). 

Cannabinoids also affect the function of cultured human lymphocytes. THC 

suppresses leukocyte migration (Schwartzfarb, Needle and Chavez-Chase, 1974) and 

lymphoproliferation (Nahas, Morishima and Desoize, 1977). Again, these effects occurred 

upon exposure to high doses. Spector and Lancz (1991) showed that 11-0H-THC 

suppressed natural killer (NK) cell activity. The mechanism for some of the effects of 

THC might involve adenylyl cyclase activity since THC suppressed agonist-induced cAMP 

in lymphocyte cultures (Diaz, Spector and Coffey, 1993). Cytokine levels in human 

lymphoid cultures either increased or decreased (Watzl, Scuderi and Watson, 1991 ). 

Many reports provide evidence that cannabinoids affect the immune system of 

rodents. In vitro studies performed with rodent lymphocytes indicate that cannabinoids 

suppressed antibody production (Bacztnsky and Zimmerman, 1983; Klein and Friedman, 

1990), though the molecular mechanism for these effects remains unknown. B 

lymphocytes appear to be more sensitive to cannabinoid suppression than T lymphocytes 

(Klein et al., 1985). Drug-induced suppression of antibody production is the most 

consistently reported observation in cannabinoid studies in the immune system. The effects 

of cannabinoids upon T lymphocyte proliferation do not always lead to suppression, 

suggesting that cannabinoids act as modulators (Luo et al., 1992; Pross et al., 1992). 

Several studies have suggested that cannabinoids decrease host resistance to 

infection. Cannabinoids caused enhanced mortality in rodents to Lysteria monocytogenes 

and Herpes simplex type II virus (Morahan et al., 1979). Extrapolating these results to 

humans is difficult since drug doses that had the greatest effect were in the 100 mg/kg 
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range. In more recent studies, bacterial infections in mice have been examined using THC 

in the range of 5 mg/kg (Klein et al., 1993; Klein, Newton and Friedman, 1994). The 

effects of THC on resistance to infection depended on the dose and timing of injection. If 

mice were given two THC injections (8 mg/kg), one day before and one day after infection 

with Legionella pneumophilia, they displayed mortality within minutes of the second 

injection (Klein et al., 1993; Klein, Newton and Friedman, 1994). Animal studies 

confirmed that cannabinoids decreased antibacterial (Ashfaq, Watson and E!Sohly, 1987) 

and antiviral activity (Cabral, Lockmuller and Mishkin, 1986) of the host immune system. 

Recent research has investigated the expression of central and peripheral 

cannabinoid receptors in immune tissues (Galiegue et al., 1995). The CB I receptor is 

expressed in human immune-related tissues, including bone marrow, thymus and tonsils. 

Levels of CB2 receptor expression were 10-100-fold higher in immune tissues than levels 

of CB I receptor expression. The rank order of CB2 mRNA in human blood cell 

populations was B-cells > NK cells>> monocytes > polymorphonuclear neutrophil cells > 

T8 cells > T4 cells. An immunohistological analysis performed on tonsil sections showed 

that CB2 expression was restricted to B-lymphocyte-enriched areas of the mantle of 

secondary lymphoid follicles. Expression of the receptors in components of the immune 

system provide further evidence for cannabinoid immunosuppressive events. 

Several studies have examined the effects of endogenous ligands on the immune 

system. Although anandamide bound to the CB2 receptor transfected in CHO cells, it did 

not inhibit CB2 coupled adenylyl cyclase activity (Bayewitch et al., 1995). Anandamide 

did inhibit T and B lymphocyte proliferation and at high doses induced apoptosis 

(Schwartz, Blanco and Lotz, 1994). The authors concluded that since anandamide is made 

in the brain and affects the immune system, it may participate in neuroimmune interactions 

(Schwartz, Blanco and Lotz, 1994). Lee et al. (1995) demonstrated that 2-arachidonyl 

glycerol, but not anandamide, exhibited biological activity on spleen cell function. These 
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findings suggest that centrally produced endogenous cannabinoids are most efficacious at 

mediating effects in neural tissue, and peripherally produced compounds exhibit greater 

efficacy on peripheral targets (Lee, Yang and Kaminski, 1995). Additional research is 

necessary to clarify the role of endogenous anandamides in the immune system. 

Cardiovascular System 

Cannabinoids also affect the cardiovascular system. THC can induce tachycardia, 

orthostatic hypotension and decreased platelet aggregation (Clark et al., 1974; Merritt et al., 

1980; Schaefer et al., 1979). In the rat, a transient pressor response is followed by 

hypotension and bradycardia (Dewey, 1986). Changes in the electrocardiogram include 

varied P and T waves and decreased ST segments (Johnson and Domino, 1971 ). 

Exposure to cannabinoids may aggravate pre-existing conditions such as angina and 

congestive heart failure. Hypotension and bradycardia result after prolonged exposure in 

humans (Benowitz and Jones, 1975). After high doses in humans, conjunctivae redden 

due to dilation of blood vessels and increased heart rate with a concomitant peripheral 

vasodilation (Dewey, 1986). 

Recent work by Varga et al. ( 1995) implicates the involvement of the CB I receptor 

in the hypotensive action of anandamide. Anandamide produced a brief pressor response 

and a more prolonged depressor response. Only the depressor response was inhibited 

upon administration of the cannabinoid antagonist SR 141716A. In addition, either 

cervical spinal cord transection or blockade of cx-adrenergic receptors attenuated the 

depressor response. These results suggest that the pressor component of anandamide's 

cardiovascular response results from a peripheral action not mediated by the CB I receptor 

or the sympathetic nervous system (Varga et al., 1995). The depressor response is due to 

inhibition of sympathetic tone mediated by CB I receptors. 
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Human Psychopharmacology 

Cannabinoids produce a variety of acute psychological effects in humans. THC is 

rapidly absorbed after smoking, and acute peak effects appear between 30 and 60 minutes. 

When cannabis is ingested, the onset of action is slower, and subjective effects last for 5-

12 hours without a clear peak. Acute subjective effects are dose-dependent. It is still 

unknown whether cannabis hinders performance and produces a subtle hangover syndrome 

due to residual effects of cannabinoids during the day after smoking. The subjective acute 

effects of cannabis are very diverse. One characteristic of cannabis use is a state of 

intoxication or euphoria and relaxation, followed by drowsiness, sedation and sometimes 

depression (Hollister, 1986). Other symptoms accompanying euphoria include alterations 

of motor control, sensory functions and cognitive (decision-making) processes (Nahas, 

1993). Users of cannabis also claim that the drug heightens sensitivity to external stimuli, 

brightens colors and enhances music appreciation. A recent extensive review concludes 

that at doses which produce a moderate level of intoxication, a wide range of learned and 

unlearned behaviors, including simple motor tasks and complex psychomotor and cognitive 

tasks were affected (Chait and Pierri, 1992). They concluded, after an evaluation of the 

literature, that cannabis adversely affected gross and simple motor tasks (body sway and 

hand tremor), psychomotor behavior (rotary pursuit, Digit Symbol Substitution, reaction 

time, accuracy in divided attention and sustained attention). Cannabis had weak effects on 

simple reaction time and inconsistent effects on hand-eye-coordination. Data from 

Heishman et al. ( 1990) indicate that cannabis can impair complex human performance in 

arithmetic and recall tests up to 24 hours after smoking. 

Scientific evidence suggest that marijuana impairs memory and learning. �9-THC 

causes its greatest and most consistent effects in short-term memory, as measured in free 

recall of previously learned items. The major impairment by cannabis in free recall studies 

produces substantial increases in memory intrusions (Chait and Pierri, 1992). Neither 
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immediate and sustained attention nor controlled retrieval from semantic memory were 

affected. Thus, THC probably impairs acquisition and working memory but not retrieval 

processes. The effects of cannabis upon recall in the digit span, recognition and paired­

associate memory performance tasks have been inconsistent (Chait and Pierri, 1992; 

Schwartz, 1993). Generally, cannabis did not affect the retrieval of previously learned 

facts. Although the acute effects of THC on memory appear modest, there are concerns 

about the effects of chronic use upon adolescent development. 

THC does alter time perception, producing an overestimation of elapsed time (Chait 

and Pierri, 1992). Associated with the altered time sense is temporal disintegration, which 

is defined as difficulty in retaining and coordinating memories and perceptions relevant to a 

goal the user is perusing (Melges et al., 1970). The effect of changed time perception and 

short-term memory disruption might be reflected in decreased driving and occupational 

skills, but evaluation of work productivity in chronic users has not detected major 

decrements in work performance (Hollister, 1986). 

Impairment of both cognition and motor control has been documented in a 

laboratory setting and proposed as a contributor to accident and traffic fatalities (Aussedat 

and Niziolek-Reinhardt, 1993) and non-vehicular accidents (Soderstrom et al., 1993). 

However, based upon a review of the literature, no clear relationship has been shown 

between cannabis smoking and either seriously impaired driving performance or the risk of 

accident involvement. The extent that cannabis contributes to traffic accidents is not known 

with certainty. Results from laboratory studies and driving simulations are reviewed 

extensively by Chesher ( 1995) and Rabbe (1994 ). Laboratory studies have shown 

performance impairment occurring after inhaled doses of cannabis as low as 40 µg/kg. 

Cannabis produces a dose-dependent impairment on specific skills, which become 

pronounced after 100-200 µg/kg doses. In particular, tracking, divided attention and 
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vigilance tests performance are affected by THC. In contrast, results from driving 

simulator and closed-course tests surprisingly indicate that THC in single-inhaled doses up 

to 250 µg/kg has relatively small effects on driving performance. Explaining the disparity 

in results obtained in laboratory studies and in driving simulations is difficult. Recently, 

Rob be (1994) performed a series of studies which evaluated the effects of cannabis 

smoking on actual driving performance and compared these results to the effects of alcohol 

on driving. Several driving tests were employed including maintenance of a constant speed 

and lateral position during uninterrupted highway travel, following a lead car with varying 

speed on a highway and driving in a city. Cannabis produced a moderate degree of 

impairment, which was related to the THC dose. At a dose of 300 µg/kg THC impaired 

road tracking ability and slightly impaired the ability to maintain a constant headway when 

following another car. A low THC dose (100 µg/kg) did not impair driving ability in the 

city to the same extent as a blood alcohol concentration of 0.04%. Drivers under the 

influence of marijuana tended to overestimate the level of impairment and compensate by 

concentrating on driving and/or slowing down. In contrast, drivers under the influence of 

alcohol tended to underestimate the effects of alcohol and not make allowances for 

impairment. Several studies have also attempted to determine the incidence of cannabis 

involved in road crashes in which the driver had consumed cannabis and was responsible 

for the collision. Three studies have reported that cannabis-bearing drivers were no more 

responsible than the non-drug-bearing drivers (Drummer, 1994; Terhune et al., 1992; 

Williams et al., 1985). This finding must await clarification until sample sizes are greatly 

increased. Robbe (1994) concluded that while campaigns to discourage the use of cannabis 

by drivers are warranted, concentrating upon cannabis alone may not be in proportion to 

the safety problem it causes. 

Several factors complicate the interpretation of cannabis-induced impairment, such 

as co-use with other drugs, variability among individuals, development of tolerance and 
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intrinsic difficulties in conducting a systemic evaluation in the general population. 

Cannabis is often co-abused with other drugs, such as alcohol. Co-use of cannabis with 

alcohol (Wechsler et al., 1984) or phencyclidine (PCP) (Poklis, Maginn and Barr, 1987) 

might augment cannabis' effects. Results indicate that performance disruption was greater 

for alcohol-induced impairment in combination with cannabis (Hollister, 1986). It has 

been reported that ethanol-induced dose-dependent decrements in performance skill 

required for automobile driving were further exacerbated by cannabis (Perez-Reyes et al., 

1988). Tolerance does develop during chronic exposure to high quantities of cannabis, but 

the degree of tolerance following intermittent exposure to cannabis is less definitive 

(Hollister, 1986). Detecting cannabis intoxication by motor performance in an experienced 

user may be difficult unless a complex performance task is assessed or if the user has had 

experience in the task (Chait and Pierri, 1992). Cannabis intoxication in an inexperienced 

user is readily detectable by many performance tests. Establishing a degree of correlation 

between the level of impairment and blood concentrations of cannabinoids would aid in 

determining causality in accidents. In chronic users, tolerance may develop to some of the 

acute effects. Thus, the level of intoxication is more difficult to detect in an experienced 

user except in novel tasks or tests requiring a great deal of skill or manual dexterity (Chait 

and Pierri, 1992). Given the confounding factors discussed above, it is unlikely that 

measures of �9-THC and its metabolites will become standards for intoxication. 

Human studies have been conducted to determine if a state-dependent learning 

effect exists for cannabis. The first evidence of a cannabis-induced state dependency was 

reported by Abel ( 1970). Subjects learned narrative material while exposed to cannabis and 

were tested in a sober or cannabis-intoxicated state (Abel, 1970). A greater deficit of recall 

was recorded for subjects tested in the sober state. Evidence also exists that the state­

dependent learning effects of cannabis are most apparent in tasks using sequential memory 

(Hill et al., 1973; Stillman et al., 1974). The state-dependent learning effect for cannabis is 
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observed in memory tasks rather than psychomotor or adversely motivated tasks (Jarbe et 

al., 1993). Difficult tasks, such as active recall, are also affected by state-dependent 

learning (Hirbe et al., 1993). In order to determine the influence of the frequency of use 

upon cannabis' effects on memory, one study differentiated between heavy and social users 

(Cohen and Rickles, 1974). Subjects in the heavy-user group average smoking cannabis 

five to six times per week for a year. The social-user group smoked on weekends. The 

frequency of use had profound effects on the state-dependent learning effects of cannabis. 

In recall tests, social-users did exhibit state-dependent effects, whereas heavy users did 

not. The heavy-user group performed equally well whether intoxicated or not, and they 

performed better in recall than social-users. 

Since one of the well known acute effects of cannabis is to impair cognitive 

functioning, it has long been suggested that chronic cannabis use may cause lasting 

cognitive impairments. Assessing the chronic effects of cannabis or any other psychoactive 

drug on cognitive functioning is often difficult since many factors other than drug use must 

be controlled. Difficulties encountered when attributing cognitive effects to psychoactive 

drugs include determining levels of cognitive impairment, which might have preceded drug 

use, determining the duration and frequency of drug use and taking into account effects of 

multiple drug use. It has been proposed that chronic use might result in long term memory 

impairment (Schwartz, 1993). Yet, previous reviews have generally concluded that 

evidence is insufficient to conclude that long term use of cannabis produces lasting gross 

cognitive impairment (Wert and Raulin, 1986). Solowij (in press-b) and Pope et al. (1995) 

have reviewed recent, more methodologically rigorous research which used improved test 

procedures and electrophysiological methods. These findings provide evidence that 

cannabis produces complex and subtle impairments, which are related to the duration of 

cannabis use. Impairments appear specific to higher cognitive functions, such as the 

organization and integration of complex information involving attention and memory 
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processes (Solowij, in press-b). It has been hypothesized that long term cannabis use 

impairs the frontal lobe, an area of the brain which functions in the temporal organization of 

behavior. This hypothesis is consistent with the altered perception of time and with 

cerebral blood flow studies which demonstrate greatest effects in the frontal lobe region. 

Recent studies also suggest that impairment assessed by sensitive measures of brain 

function can be detected after only five years of use. Not all individuals are affected 

equally by long term use, and often the effects are subtle. However, one should not 

underestimate the effects of even subtle impairment of cognitive functioning on daily life. 

Great interest has been generated in the effects of cannabis upon adolescent 

development and educational performance and production of a cannabis-induced 

"amotivational syndrome." A modest statistical relationship may exist between cannabis 

and other illicit drug use and poor educational performance (Schwartz, 1993). Some 

individuals suffer no memory impairment at all, whereas those individuals who already 

have a learning disability are more susceptible to memory disruptions than a gifted student 

group (Schwartz, 1993). Attempts to verify the existence of a cannabis-induced 

"amotivational syndrome" have failed (Dewey, 1986; Foltin et al., 1989; Foltin et al., 

1990; Hollister, 1986). The lack of motivation observed in some individuals more likely 

results from psychosocial problems and polydrug use rather than solely cannabis use 

(Taschner, 1983). Additional research should address the impact of long term cannabis use 

on cognitive development in adolescents. 

Since THC produces diverse psychological effects in humans, it has been 

suggested that cannabinoids might induce psychopathological states (George, 1970; Talbott 

and Teague, 1969). However, identification of a specific "cannabis psychosis" even in 

chronic, heavy users has not occurred (Dewey, 1986; Hollister, 1986; Thornicroft, 1990). 

Cannabis does appear to worsen symptoms of some preexisting mental disorders, such as 

schizophrenia (Negrete, 1993). Even though paranoid schizophrenics recognize the 
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worsening of their disorder with cannabis use, many still continue to try to self-medicate 

themselves with the drug. Cannabis increases hallucinations and delusions and produces 

inconsistent results on the symptoms of social withdrawal and lethargy. While some 

investigators believe that cannabis use does lead to the development of schizophrenia, 

conclusive evidence does not exist that cannabis is a causative factor in the development of 

schizophrenia (Allebeck, 1993; Negrete, 1993). Individuals abusing cannabis who also 

develop psychiatric problems may suffer from rapid onset schizophrenia (Allebeck, 1993). 

Since most of these individuals are poly-drug users, it seems more likely that cannabis or 

any of the other abused drugs might act as a trigger for precipitating latent schizophrenia. 

The relative risk of developing psychiatric problems in the general population of cannabis 

users is apparently very small. Proper studies comparing the development of disorders in 

abusers and non-abusers have not been performed. However, given the world-wide and 

prevalent use of cannabis, one would expect to see more reported cases of cannabis­

induced psychiatric disorders if cannabis readily caused them. 

Human Tolerance and Dependence 

In the late 60s and early 70s, there was considerable confusion regarding the 

development of tolerance to smoking cannabis. The well known phenomenon that many 

newcomers required several smoking episodes before experiencing the cannabis 'high' led 

to the hypothesis that "reverse tolerance" developed. The notion that tolerance could then 

develop to cannabis' psychotomimetic effects formed the basis of the proposed "reverse­

reverse tolerance". There is no doubt that many factors, other than the inherent properties 

of ,:19-THC, are contributors including potency of the cannabis, expectations, 

environmental influences, individual differences and frequency of use, to name just a few. 

Yet, convincing evidence exists for the development of tolerance to 119-THC in humans 

(Jones, Benowitz and Bachman, 1976), as was described above for animals. Tolerance 
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developed to a variety of ,19-THC's effects, following oral administration, including 

cannabinoid-induced decreases in cardiovascular and autonomic functions, increases in 

intraoccular pressure, sleep disturbances and mood changes (Jones, Benowitz and 

Bachman, 1976). Results are less conclusive for behavioral tolerance. To achieve 

behavioral tolerance, high doses of ,19-THC were administered for a sustained period of 

time. In one study, tolerance to the subjective effects of ,19-THC developed after oral 

administration (10 mg) for several days; greater tolerance developed with increased 

amounts of the drug (Jones, 1983). Thus, if the doses of ,19-THC are small and 

infrequent, little behavioral tolerance develops. High doses must be given for long periods 

of time to produce tolerance. 

Although it is established that chronic cannabis use does not result in severe 

withdrawal symptoms, numerous case reports attest to development of dependence (Jones, 

1983). Several early reports came from countries where potent cannabis was used for long 

periods of time. Upon deprivation of cannabis, users experienced auditory and visual 

hallucinations and irritability (Fraser, 1949). Since that report, the development of 

tolerance and dependence have been studied under rigorous and controlled conditions 

(Jones, 1983; Jones and Benowitz, 1976; Jones, Benowitz and Bachman, 1976; Jones, 

Benowitz and Heming, 1981). In one study, a 30 mg dose of cannabis extract or ,19-THC 

was administered orally approximately six times per day for up to 21 days. The most 

prominent symptoms upon cessation of administration were increased irritability and 

restlessness. Other symptoms, though variable, included insomnia, anorexia, increased 

sweating and mild nausea. Objective symptoms were increased body temperature, weight 

loss and hand tremor. Re-administration of a cannabis cigarette or oral ,19-THC alleviated 

the objective and subjective effects, suggesting the establishment of a withdrawal 

symptom. 
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The prevalence of cannabis use has resulted in intense efforts of cannabis research 

for the past several decades. Attempts have been made to discern the pharmacology of 

cannabis and the mechanism of action producing the psychoactive effects. In addition to 

exploring the euphoric effects of cannabis, emphasis has been placed upon the drug's 

therapeutic potential. Early crude preparations of cannabis were used to treat allergies and 

migraines and to facilitate childbirth (Mechoulam, 1986). The effective component, 119_ 

THC, was also used for alleviating pain, glaucoma, muscle spasticity, bronchial asthma 

and nausea (Hollister, 1986). However, the lack of evidence that cannabinoids are better 

than other drugs currently in use limits their clinical usefulness, and separating the 

undesired side effects of cannabis from the therapeutic effects has proven difficult. In 

addition, schedule II drugs require extensive record-keeping and cause other administrative 

problems. Pharmaceutical companies have marketed only 119-THC which is used primarily 

as an antiemetic for cancer chemotherapy patients. The development of a cannabinoid 

analog possessing greater pharmacological selectivity is an important aim for future 

cannabinoid research. 

Although many useful probes for determining the underlying mechanism of action 

for cannabinoids have been produced, no clinically relevant compound has emerged. The 

inability to separate the various pharmacological and psychoactive properties of the 

compounds remains the greatest impediment. Cannabinoids have generated interest over 

the centuries for their alleged ability to treat a wide range of disorders. Possible therapeutic 

uses include treatment of bronchial asthma, nausea, vomiting, pain, convulsions, 

glaucoma, muscle spasticity and loss of appetite (Hollister, 1986). Cannabinoids also 

represent a novel way to treat disorders not responding to traditional agents or therapies. 

Current debate in this country centers upon the possible legalization of cannabis for 

medicinal purposes. Proponents of legalization believe that the availability of THC for 
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medicinal purposes would eliminate the need for the crude plant product. While there may 

be some merit in legalization arguments, the development of a potent and selective 

cannabinoid possessing greater efficacy than current drugs would, of course, end the 

ongoing debate. 

Cannabis has been used most frequently for treating refractory nausea and 

vomiting. In 1987, the United States Food and Drug Administration approved dronabinol, 

a L\9-THC formulation in sesame oil, for treatment of chemotherapy-induced nausea and 

vomiting not responding to other agents. Dronabinol has been useful, though some 

patients dislike the psychotropic effects and somnolence. L\9-THC has gained orphan 

status by the FDA to treat nausea from chemotherapy and to stimulate appetite in AIDS 

patients. Results from clinical trials have suggested that the drug improves appetite (Plasse 

et al., 1991). However, one should remember that extensive animal studies indicate that 

cannabinoids adversely affect the immune system. Should a drug with possible 

immunosuppressive properties be given to patients who already have a compromised 

immune system? Only future research and more extensive clinical evaluation will determine 

if L\9-THC truly benefits these individuals. 

Drug development also has focused upon the potent antinociceptive properties of 

cannabinoids. Great progress would be made in synthesizing an analgesic agent lacking 

the side effects and abuse liability of opioids. Unfortunately, cannabinoids produce 

antinociception at doses that also elicit other behavioral effects, such as sedation, 

hypothermia and catalepsy. Cannabinoids have a distinct pharmacological profile from the 

opioids and may act through a different mechanism for alleviating pain. Recent research 

demonstrated that a kappa receptor antagonist, nor-binaltorphimine (nor-BNI), blocked 

cannabinoid-induced antinociception, but did not affect the other behaviors (Smith, Welch 

and Martin, 1993). Perhaps this compound could be used to understand the mechanism of 

action for cannabinoid analgesia. 
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Dissertation Objectives 

After years of research, anandamide has been proposed to be the elusive 

endogenous ligand for the cannabinoid receptor. Anandamide possesses many of the same 

pharmacological effects as �9-THC and other exogenous cannabinoids, including 

production of antinociception, inhibition of locomotor activity, catalepsy and decrease in 

body temperature in mice. In vitro, anandamide mimics cannabinoids by inhibiting both 

forskolin-stimulated increases in adenylyl cyclase activity and the electrically-evoked 

murine vas deferens twitch response. Although anandamide does generate many of the 

same effects as other cannabinoids, differences do exist. The discovery of anandamide and 

other similar endogenous compounds provides the opportunity to investigate and 

understand the purpose of this novel neurochemical system. One of the problems 

encountered at the onset of anandamide research was the susceptibility of this compound to 

metabolism in both in vitro and in vivo systems. Developing a potent and stable 

anandamide analog would greatly facilitate determining the physiological and 

pharmacological role of anandamide. Examination of the structures of anandamide, CP 

55,940, the potent bicyclic cannabinoid, and SR 141716A, the proposed antagonist of the 

central cannabinoid receptor, reveals great structural diversity. Anandamide is a fatty acid 

derivative. CP 55,940 is produced by the opening of the B ring in three ring system. �9-

THC and SR 141716A vastly differ in structure from either compound. The structural 

differences raise the question as to whether these three compounds are binding to the same 

receptor in the same manner. 

While the discovery of anandamide provides an answer to the type of endogenous 

compound that binds to the cannabinoid receptor, many questions remain. The purpose of 

this dissertation is to investigate anandamide's interaction with the central cannabinoid 

receptor. The specific aims of this research are to: 
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I) Determine which structural features of anandamide are important for interaction 

with the central cannabinoid receptor, as assessed by in vitro binding studies and in vivo 

behavioral experiments 

2) Structurally modify the template of anandamide in order to develop more potent 

and metabolically stable compounds 

3) Characterize anandamide's binding to the cannabinoid receptor in the CNS by 

comparing anandamide's receptor binding affinities, as determined from autoradiographic 

experiments in rat brain from selected brain areas 

4) Compare anandamide's receptor binding densities to the binding densities and 

patterns of two other compounds, CP 55,940 and SR 141716A, that bind to the central 

cannabinoid receptor 
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Marijuana, or Cannabis sativa, is one of the oldest and most widespread drugs of 

abuse in use today. The psychoactive constituent of cannabis, ,19-THC, produces a unique 

pattern of behavioral effects, which include antinociception, catalepsy, anticonvulsive 

activity, hypothermia, hyperexcitability and depression of motor activity in a wide variety 

of animal species (Dewey, 1986). Structure-activity relationship studies suggested the 

existence of a specific cannabinoid receptor through which ,19-THC exerted behavioral and 

central effects (Razdan, 1986). The development of potent synthetic bicyclic cannabinoid 

agonists, such as CP 55,950, allowed for the characterization of a specific saturable high­

affinity cannabinoid binding site in rat membranes (Devane et al., 1988). The structure-

activity profile indicated a correlation between cannabinoid receptor binding and 

pharmacological and behavioral effects (Compton et al., 1993). 

Our understanding of the cannabinoid system has progressed in a somewhat non-

traditional manner in that characterization of the second messenger system proceeded the 

receptor binding studies. The expression of the cannabinoid receptor within the brain 

suggested the existence of an endogenous ligand. In 1992 a candidate ligand isolated from 

porcine brain displaced [3H]-HU 243, a cannabinoid receptor ligand, from synaptosomal 

membranes in a dose-dependent manner (Devane et al., 1992). The purified compound 

was determined to be arachidonylethanolamide, or anandamide, a derivative of arachidonic 

acid which bears no obvious structural similarity to either ,19-THC or CP 55,940. Like 

other cannabinoids, anandamide inhibited forskolin-stimulated cAMP production in CHO 
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cells expressing the human cannabinoid receptor and inhibited N-type calcium currents 

through a pertussis toxin-sensitive G protein (Felder et al., 1993; Mackie et al., 1993; 

Vogel et al., 1993). Anandamide produced effects similar to ti9-THC, including 

antinociception, hypomotility, hypothermia and catalepsy in mice (Fri de and Mechoulam, 

1993; Smith et al., 1994). However, anandamide differed pharmacologically from !i9-

THC in that anandamide had a shorter duration of action in behavioral assays, was less 

potent and possessed different antinociceptive properties (Smith et al., 1994). 

It is highly likely that metabolism plays a role in the short duration of action of 

anandamide. The issue of metabolism was first raised with the report that PMSF 

(phenylmethylsulfonyl fluorine), an enzyme inhibitor of serine proteases, some thiol 

proteases and esterases such as erythrocyte acetylcholinesterase, interfered with the 

degradation of anandamide by inhibiting an amidase (Deutsch and Chin, 1993). Initial 

binding studies with anandamide competition for [3H]-WIN 55,212-2 resulted in 

anandamide exhibiting low affinity for the receptor (Childers et al., 1994). These 

researchers discovered that the addition of PMSF to the incubation condition allowed 

anandamide interaction with the receptor. Subsequent binding studies performed in our 

laboratory supported this finding in that the binding affinity of anandamide was enhanced 

several hundred fold with the addition of PMSF (Smith et al., 1994 ). The fact that 

anandamide was found in brain and that both synthetic and degradative enzymes for 

anandamide are present in brain provide strong support for anandamide being an 

endogenous cannabinoid. 

Anandamide had a shorter duration of action and more rapid onset than ti9-THC 

(Smith et al., 1994). The shorter duration of action could be due to metabolic differences 

rather than separate mechanisms. Anandamide is metabolized to arachidonic acid by an 

amidase (Deutsch and Chin, 1993), whereas ti9-THC is not. Although anandamide 

produced antinociception, the mechanism by which it does so may be different than Li9-
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THC since nor-BNI, a kappa opioid antagonist that blocks t:;.9-THC-induced 

antinociception, did not block anandamide-induced antinociception (Smith et al., 1994). 

While much evidence supports anandamide being the endogenous ligand, this dissimilarity 

demonstrates that the actions of anandamide and t:;.9-THC are not identical. 

At the present time, only limited structure-activity evaluations have been conducted 

with anandamide (Felder et al., 1993; Mechoulam et al., 1994). The first objective of this 

study was to determine the structural requirements important for anandamide's interaction 

with the cannabinoid receptor. To accomplish this objective, rapid filtration binding studies 

employing [3H]-CP 55,940 as the radioligand were conducted in the presence and absence 

of PMSF. Behavioral activity was assessed by the ability of the analogs to produce 

hypomotility and antinociception. The affinities of anandamide analogs for the binding site 

were correlated with in vivo pharmacological potencies. These correlations were then 

compared to those obtained for other cannabinoid agonists. The second objective was to 

develop metabolically stable and potent analogs of anandamide. If compounds were stable 

in binding experiments both with and without addition of an enzyme inhibitor, then these 

compounds might also be stable in vivo. Analogs with increased potency and stability 

would aid in the determination of the physiological role of anandamide. 

Materials and Methods 

Male Sprague-Dawley rats (150-200 g) and male ICR mice (18-25 g), both from 

Harlan (Dublin, VA), received food and water ad libitum and were maintained on a 14: 10 

hr light/dark cycle. CP 55,940 was a gift from Dr. L. Melvin of Pfizer Inc., Central 

Research Division (Groton, CT). [3H]-CP 55,940 and [3H]-anandamide were purchased 

from DuPont-NEN (Wilmington, DE). [3H]-Anandamide was labeled at carbons 5, 6, 8, 
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9, 11, 12, 14 and 15. All anandamide analogs were prepared by Dr. Raj Razdan of 

Organix Inc. (Woburn, MA). 

Dru2 preparation and administration. For binding assays, compounds were 

prepared as l mg/ml stock solutions in absolute ethanol and were stored at -20 °C. If 

employed in behavioral assays, drugs were dissolved in a 1: 1: 18 mixture of ethanol, 

emulphor (International Specialty Products, Linden, NJ) and saline (0.9% NaCl) and were 

administered intravenously (i.v.) in the mouse tail vein in volumes of 0.1 ml/10 g of body 

weight. 

Bindin2 assays. Radioligand binding to P2 membrane preparations was 

performed as described elsewhere (Compton et al., 1993), with the exception that P2 

pellets were prepared from whole rat brains, not cortices. Ethanolic 1 mg/ml stock 

solutions of anandamide, anandamide analogs and CP 55,940 were diluted in buffer (50 

mM Tris-HCI, 1 mM EDT A, 3 mM MgC12 and 5 mg/ml BSA) without evaporation of the 

ethanol (final concentration not exceeding 0.4%). Saturation studies were performed to 

determine the Kd of CP 55,940 in the presence and absence of PMSF (50 µM). [3H]-CP 

55,940 (50 pM - 10 nM), competing unlabeled CP 55,940 ( l  µM) and sufficient buffer to 

bring the final reaction volume to 1 ml were added to siliconized glass tubes. Binding was 

initiated with the addition of 150 µg of membrane protein. In competition studies, analog 

concentrations ranging from 1 nM to 10 µM and a 1 nM concentration of [3H]-CP 55,940 

were used. Nonspecific binding was determined in the presence of 1 µM CP 55,940. 

Saturation and competition experiments were also performed with and without 50 µM 

PMSF. After a one-hour incubation at 30 °C, the reaction was terminated with the addition 

of 2 ml ice-cold buffer (50 mM Tris-HCI, 1 mg/ml BSA) followed by rapid filtration 

through PEI-treated filters. The assays were performed in triplicate, and the results 

represent the data from three to six independent experiments. 
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Behavioral evaluations. Mice were acclimated to the laboratory overnight. 

Depression of locomotor activity was measured by placing mice into individual photocell 

activity cages (11 x 6.5 in) 5 min following an i.v. injection. For the next 10 min the total 

number of beam interruptions in the 16 photocell beams per cage were recorded using a 

Digiscan Animal Activity Monitor (Omnitech Electronics Inc., Columbus, OH). 

Spontaneous activity (SA) was expressed as percent of control activity. Antinociception 

was assessed by measuring the tail-flick (TF) response to a heat stimulus (Dewey et al., 

1970). Control latencies of 2 to 4 sec were obtained for each animal with a standard tail-

flick apparatus prior to drug or vehicle administration. A 10 sec maximum latency was set 

to avoid tissue damage. Mice then were re-tested 15 min after drug injection, and 

differences in latencies to the tail-flick response were recorded. Each dose tested in the 

antinociception and hypomotility assays represents a separate group of animals (six mice 

per group). Antinociception was expressed as the %MPE (maximum possible effect), 

which was calculated as: 

%MPE = !(test latency - control latency)
] 

[ (10 sec - test latency) 

X 100. 

Time Course Study. Animals were injected i.v. with either anandamide, 

compound 16 or vehicle. At 5, 15, 30 and 60 min following injection, the animals were 

tested in the tail-flick assay. Separate groups of animals (six mice per group) were used for 

each time point and drug. 

Anandamide Metabolism in the Receptor Binding Assay. [3 H ]­

Anandamide (0.1 µCi) (specific activity = 207 Ci/mmol), 1.5 µM anandamide, 150 µg 

membrane protein and sufficient buffer to bring the final reaction volume to 1 ml were 
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added to siliconized glass tubes. The experiment was performed either with or without 

PMSF (50 µM) in triplicate. Following a one-hour incubation at 30 °C, samples were 

extracted twice with 2 ml acidified ethyl acetate. The organic layer was filtered through 

glasswool, dried completely and re-suspended in 500 µl ethanol. Samples were analyzed 

by high performance liquid chromatography. The mobile phase was composed of 

MeOH:H20:acetic acid (85: 15:0.05). A reverse phase Cl5  5 µm absorbance column was 

used with a 50 mm hand-packed guard column in line. Sample flow rate was 1 ml/min for 

30 min through a radiomatic detector with a scintillant flow of 3 ml/min. 

Data Analysis. The Bmax and Kct values obtained from the Scatchard analysis 

(Rosenthal, 1967; Scatchard, 1951) of the saturation experiments were calculated from the 

KELL binding analysis programs for the Macintosh computer (Biosoft, Milltown, NJ). 

ICso values for the analogs were determined and then converted to Ki values (Cheng and 

Prusoff, 1973). Statistical evaluation of parallelism between displacement curves generated 

in the presence and absence of PMSF were performed using ALLFIT (De Lean, Munson 

and Rodbard, 1978). Dose-response relationships were determined for each analog in the 

pharmacological assays. Antinociception and hypomotility data were converted to probit 

values, and ED50's were calculated by unweighted least-squares linear regression analysis 

of the log dose versus the probit values. Statistical analysis of the behavioral data was 

performed using ANOV A with Dunnett's t-test for comparison to the vehicle group. 

Comparisons between binding data (log Ki) and behavioral data (log EDso values 

expressed in µmol/kg) were made with the Spearman rank order correlation test. 

Results 

Scatchard analysis. Saturation experiments were conducted in the absence and 

presence of 50 µM PMSF to determine if PMSF altered the affinity of [3H]-CP 55,940 for 
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the binding site in whole brain P2 membranes. Computer analysis of saturation data 

(means ± S.E., n = 5) without PMSF indicated a Kd of 580 ± 70 pM, a Bmax of 2.09 ± 

0.23 pmol/mg protein and a Hill coefficient of 0.96 ± 0.05. Incubation with PMSF 

produced a Kd of 1030 ± 130 pM, a Bmax of 2.25 ± 0.19 pmol/mg protein and a Hill 

coefficient of 0.94 ± 0.02 (means ± S.E., n = 5). Bmax and Hill coefficient values were 

the same in the presence and absence of PMSF. However, the addition of PMSF produced 

a statistical difference, as determined by Dunnett's t-test (P < 0.05), between the Kd values. 

The Ki's of the analogs were calculated using the appropriate Kci of [3H]-CP 55,940. 

Determination of Analog Affinity Constants. One of the main objectives of 

this investigation was the identification of structurally important features of anandamide 

required for cannabinoid receptor binding. Anandamide, an eicosanoid with cis double 

bonds at carbons five, eight, eleven and fourteen, is composed of arachidonyl and 

ethanolamide moieties joined through an amide linkage. The ability of anandamide to 

compete for [3H]-CP 55,940 binding is depicted in Figure 6. The average Ki with PMSF 

was 89 ± 10 nM (n = 4). The average Ki increased to 5400 ± 1600 nM (n = 3), and the 

displacement curve shifted to the right when PMSF was not added. Since the affinity of 

anandamide was substantially decreased without the addition of an enzyme inhibitor, all 

displacement experiments were routinely performed in the presence of PMSF. Selected 

analogs were subsequently evaluated in the absence of PMSF to assess the influence of 

metabolism on binding. If an analog exhibited low affinity in the presence of the amidase 

inhibitor, additional binding studies were not repeated without PMSF. 

Chemical modifications made to the backbone of anandamide created a diverse 

series of anandamide analogs. The first series of compunds consisted of changes in the 

double bond arrangement (Table 1). When a single double bond was placed at carbon 11, 

as in compound 1, a Ki of greater than 10,000 nM was obtained, as compared to 

anandamide's Ki of 89 nM. Any compound displaying a Ki of 10,000 nM or greater was 
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Figure 6. Anandamide displacement of [3H]-CP 55,940 binding in the absence and 
presence of 50 µM PMSF. The data are presented as percent displacement of total binding. 
The Ki in the presence ( •) of PMSF was 89 ± 10 nM; in the absence ( +) of PMSF the Ki 
equaled 5400 ± 1600 nM. Ki= mean± S.E. of at least three experiments each performed 
in triplicate. 
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considered inactive in the binding assay. Adding a fifth double bond at carbon 17 resulted 

in an analog (compound 2) with a Ki of 1470 nM. Thus, these double bond changes in the 

anandamide backbone produced compounds with lower binding affinities to the receptor. 

Ki's were not determined without PMSF for compounds 1 and 2. Compounds 3 and 4 

were completely saturated, and in compound 4 a 2'-fluoroethyl group replaced the 2'­

hydroxylethyl group. However, these compounds were insoluble in ethanol which 

prevented the determination of their Ki 's. 

Analogs also were synthesized with changes in the ethanolamide constituent, as 

listed in Table 2. Replacement of the N-ethanolamide with either a hydroxypropyl or a 

hydroxypentyl group, as in compounds 5 and 6, respectively, resulted in analogs with 

lower affinity than that of anandamide. Therefore, progressively lengthening the N­

substituent chain decreased the affinity of the analogs. In compound 7 substitution of the 

ethanolamide constituent with a sulfonamide functional group resulted in a compound with 

a Ki close to that of anandamide. The Ki increased significantly without PMSF, although to 

a somewhat lesser extent than with anandamide. Substitution with a 

bromobenzenesulfonamide (compound 8) created an inactive analog. The morpholine 

derivative of anandamide (compound 9) had an affinity that was approximately 10 times 

less than anandamide in the presence of PMSF. 

A third series of analogs was synthesized in which several subsitutents were 

substituted for the hydroxyl in anandamide (Table 3). Substitution with bulky sulfonamide 

(compound 10) or phenoxyethyl (compound 11) groups produced analogs with affinities 

less than anandamide in the presence of PMSF, with the sulfonamide derivative having 

higher affinity than the phenoxyethyl derivative. Both compounds in the absence of PMSF 

had Ki's approximately two times higher than in the presence of PMSF. However, their 

affinities in the absence of PMSF were less than that of anandamide in the presence of 

PMSF. Substitution of the hydroxyl group with a fluorine moiety (compound 12), yielded 
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Table 1. Comparison of pharmacological potency and receptor affinities of anandamide 
analogs with varying degress of saturation. 

Compound 

2 

4 

Structure 

II 12 
Anandamide 

H I' 
��OH 

2' 
20 

��OH 

�� OH 

d;�OH 

0 

�F 

'not detennined 

K (PMSF) 

(nM) 

89± 10 

> 10,000 

1470 ± 500 

(nM) 

5400 ±1600 

nd" 

nd 

tunable to detennine due to solubility problems 

S.A. 

FD so 

Tail-Flick 

( mol/k ) ( mol/k ) 

50.3 17.4 

77.2 110.3 

167.1 141.9 

50.3 261.5 

5.3 10 
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Table 2 Comparison of pharmacological potency and receptor affinities of anandamide 
analogs with substitutions for ethanolamide. 

Compound Structure K; (PMSF) K. S.A. Tail-Flick 

(nM) (nM) ED so ED so 

( mol/k ) ( mol/k ) 

H 

CR-N�OH 
189 ± 73 nd 43.7 61.4 5 

H 

6 R-�OH 1860 ± 300 nd 49.5 72.9 

�-o-� 7 
R-N 

\ 
# rNH2 

118 ± 29 1410 ± 470 37.5 148.2 0 

�� 8 
R-N-

1 
\ j Br 

> 10,000 nd > 167 > 167 0 

R-N 0 

1150 ± 300 nd 20.7 25.4 9 \._I 

'arachidony I 
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Table 3. Comparison of pharmacological potency and receptor affinities of anandamide 
analogs with substitutions for hydroxyl. 

Compound 

10 

II 

12 

13 

Structure 

�i 
� S-NH2 

R-N II 
0 

RJ�-0 

H 

R-t� 

H 

l�OCH3 
R-N 

K (PMSF) 

(nM) 

163 ± 56 

400 ± l lO 

8.6 ± I.I 

1820 ± 280 

K S.A. Tail-Flick 

(nM) ED so ED so 
( mol/k ) ( mol/k ) 

250 ± 70 44.6 142.4 

687 ± 107 23 74.1 

2130 ± 460 57.2 190 

nd 186.1 > 276 
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Table 4. Comparison of pharmacological potency and receptor affinities of alkylated 
anandamide analogs. 
Compound Structure K (PMSF) K; S.A. Tail-Flick 

(nM) (nM) ED so ED so 

( mol/k ) ( ol/k ) 

14 

�00 

137 ± 13 87 ± 18 14.1 62.8 

0 

15 

��F 

5.7 ± 12.1 15 ± 6 13.2 19.3 

0 

16 

�OH 

47 ± 2 41 ± 3 30.5 49.6 

0 

17 

�OH 

53 ± 11 137 ± 20 20.4 23.5 

0 

18 

��H 

5030 ± 760 nd > 152 > 152 
0 

19 � 461 ± 42 285 ± 58 18%@ 157 64.8 
0 

20 �/yOO 4980 ± 376 5240 ± 2025 98.3 32%@ 164 

21 d� 2330 ± 387 2250 ± 800 103 39%@ 160 

0 )-

�· 

�OH 

22 5420 ± 1450 > 10,000 0%@ 149 32%@ 149 

23 �'" > 10,000 > 10,000 4%@ 242 30%@ 242 
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results resembling anandamide: a higher Ki in the absence of PMSF. Also, this compound 

had an affinity 10 times greater than that of anandarnide in the presence of PMSF. An 

analog with a methoxy substitution (compound 13) had very low receptor affinity. 

In the final series of analogs (Table 4), methyl derivatives were prepared with the 

intention of sterically interfering with binding to metabolic enzymes. These analogs, with 

the exception of compound 18 (isopropyl at carbon 2), produced Ki's similar to 

anandamide in the presence and absence of PMSF. The affinity of compound 17 

(methylation at carbon 2) in the absence of PMSF was 2 times lower than anandarnide in 

the presence of PMSF, yet compound 17 still had a higher affinity than many of the 

analogs. Compound 15, possessing methylation at carbon 2 and a fluorine substitution for 

the hydroxyl group, had high affinity with and importantly without PMSF. A previously 

discussed fluorine analog (compound 12) had a low Ki only with PMSF, supporting the 

idea that methylation at carbon 2 interferes with metabolism in this in vitro system. 

Insertion of an ethyl group at carbon 2 (compound 19) reduced the affinity of the analog in 

the presence of PMSF, compared to anandamide. Modest differences in binding were 

obtained in the absence of PMSF. However, unlike anandarnide, the compound displayed 

slightly higher affinity without PMSF. Addition of an isopropyl group at carbon 2 

(compound 18) greatly reduced affinity regardless of whether PMSF was present. Two 

analogs were made in which the nitrogen was methylated. Compound 20 (methylation at 

nitrogen) and compound 21 (methylations at nitrogen and carbon 2) had low affinities in 

the presence and absence of PMSF. 

One of the criteria in establishing the existence of a receptor is proving 

enantioselectivity. A pair of enantiomers therefore were prepared with the intention of 

demonstrating enantioselectivity of an anandamide-Iike compound for the cannabinoid 

receptor. Recently, Abadji et al. (1994) demonstrated that (R)-( + )-arachidonyl- l '­

hydroxy-2'-propylamide bound to the cannabinoid receptor with and without PMSF and 
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produced cannabimimetic activity in vivo. Compounds 22 and 23 (R- and S-forms, 

respectively) are l '-isobutyl analogs of anandamide. Both compounds possessed a Ki of> 

10,000 nM in the absence of PMSF. Any compound with a Ki of greater than 10,000 nM 

is generally found to be pharmacologically inactive, as is demonstrated here. With the 

inclusion of PMSF, the R-form bound with weak affinity, and the S-form was inactive. 

Behavioral studies. The second objective of this study was to evaluate the 

analogs in two behavioral assays that assess cannabimimetic activity. Following an i.v. 

injection, the dose responsiveness of anandamide and anandamide analogs on spontaneous 

activity and production of antinociception was measured. From these data, EDso values 

were calculated for each compound. The EDso of anandamide was 50.3 µmol/kg for the 

hypomotility assay and 17.4 µmol/kg for the antinociception assay (Smith et al., 1994). 

Compounds 1 and 2 were not potent in producing either hypomotility or 

antinociception, which was consistent with their low affinity for the receptor. Saturation of 

anandamide resulted in an analog (compound 3) that had the same EDso as anandamide for 

the spontaneous activity assay, yet it produced antinociception only at very high doses. 

Substitution of the hydroxyl group with a fluorine atom combined with complete saturation 

(compound 4) was more potent than anandamide for both tests. 

Increasing the chain length for the N-substituent (compounds 5 and 6) and 

replacing the ethanolamide with a sulfonamide group (compound 7) reduced potencies for 

antinociception without changing EDso values in the spontaneous activity assay_ 

Compound 8 (bromobenzenesulfonamide) did not bind to the receptor, and it did not 

produce hypomotility and antinociception. An EDso value was not calculated, since this 

compound did not produce a 50% effect. Therefore, the results for compound 8 and other 

very weak compounds are reported as greater than the highest dose tested (µmol/kg). 

Interestingly, an analog with morpholine substitution for ethanolamide (compound 9) was 
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more potent than anandamide in reducing spontaneous activity and just as potent in 

producing antinociception, yet this compound had rather low receptor affinity. 

The hydroxyl constituent of the ethanolamide moiety was replaced with four 

different functional groups. Compounds 10 and 12 (sulfonamide and fluorine 

substitutions, respectively) were similar in potency to anandamide in the spontaneous 

activity test, but were 10 times less potent in the tail-flick assay (EDso > 140). Phenoxy 

substitution produced compound 11 that was more potent than anandamide in depressing 

locomotor activity and approximately five times less potent in producing antinociception. 

Compound 13 (methoxy substitution) was inactive, a finding consistent with its very low 

binding affinity. 

The l' methylated analog (compound 14) was four times more potent in the 

spontaneous activity test, but the compound was not as potent as anandamide in the tail­

flick assay. Methylation at carbon 2 (compound 17) yielded an analog that was more 

potent than anandamide in producing hypomotility and just as potent in producing 

antinociception. Similar results were obtained for compound 15 in which the hydroxyl 

group was replaced with a fluorine molecule. Compound 16 (dimethyl at carbon 2) was 

slightly more potent than anandamide for the spontaneous activity assay and less potent in 

the tail-flick test. An isopropyl derivative (compound 18) was inactive in both behavioral 

assays. Compound 19 was not as potent as anandamide in the tail-flick assay and 

produced little hypomotility. An EDso value could not be calculated for compound 19 in 

the spontaneous activity assay since a statistically significant maximal possible effect was 

not obtained. Compounds 20 and 21 (methylation at nitrogen and methylations at nitrogen 

and carbon 2) produced little or no activity in the spontaneous activity and antinociception 

assays. The pair of enantiomers (compounds 22 and 23) neither produced a reduction in 

locomotor activity nor generated more than 32% effect in the tail-flick assay. 
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Linear correlations were evaluated between binding affinities (log Ki) and in vivo 

potencies (Figure 7). Spearman rank order statistics also were perfo1med between the data. 

Compounds 3 and 4 were not included in the correlations since binding studies could not 

be performed with these insoluble analogs. Linear correlations between Jog SA and log Ki 

resulted in a correlation coefficient of 0.68 (Figure 7 A), and they were statistically 

significant in the Spearman correlation test (P < 0.05, two-tailed). When log TF and log 

Ki were compared, a lower linear correlation resulted (r = 0.51 ), and correlations were not 

statistically significant (Figure 7B). All analogs were included when comparing log SA 

and log TF (Figure 7C). A correlation coefficient of 0.72 was obtained which was 

statistically significant at the P < O.Ql level (two-tailed). 

Time course following i.v. administration for anandamide and 

compound 16 (2.2-dimethylarachidonyl-(2'-hydroxyethyl)amide) in the tail-

flick assay. If a compound is stable without the addition of an enzyme inhibitor in vitro, 

then the same compound might have greater stability in vivo. Therefore, a time course 

study was performed to determine if one of the compounds stable in the absence of PMSF 

would have a longer duration of action than anandamide in vivo. Compound 16 (dimethyl 

at carbon 2) was selected since its pharmacological potency and receptor affinity, in the 

absence of PMSF, were similar to those of anandamide in the presence of PMSF. Tail­

flick latencies were measured at 5, 15, 30 and 60 min following drug administration. As 

evident in Figure 8, the time course for compound 16 was parallel to that of anandarnide (5 

mg/kg). Therefore, the analog did not appear to be more stable than anandamide in vivo. 

Anandamide metabolism in the receptor binding assay. In order to verify 

that PMSF prevented metabolism of anandamide rather than altering its inherent binding 

affinity, [3H]-anandarnide was incubated with rat brain membrane with the same conditions 

as in the receptor binding assay. A similar system has been used to detect a wide range of 

prostaglandin metabolites (Dr. Earl Ellis, MCV/VCU, personal communication). In the 
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Figure 7. Relationships between pharmacological potency and receptor affinity for 
anandamide analogs. Correlations are based on log EDso values (µmol/kg) and the log Ki 
values determined in the presence of PMSF. Graph A represents correlations between 
spontaneous activity (SA) and receptor affinity; graph B represents correlations between 
tail-flick (TF) and receptor affinity, and graph C represents correlations between the 
potencies in the SA and TF assays. 
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absence of PMSF [3H]-anandamide was completely converted to [3H]-arachidonic acid; no 

other peak was detected. Inclusion of PMSF protected [3H]-anandamide from metabolism, 

as evidenced by the lack of [3H]-arachidonic acid formation. 

Discussion 

In order to verify that Ll9-THC and anandamide share a common receptor, SAR 

studies were conducted for correlative purposes. Extensive SAR studies have identified a 

number of structural features of Ll9-THC important for receptor affinity and 

pharmacological potency (Razdan, 1986; Mechoulam et al., 1987). These areas include the 

eleven position of the C ring, the phenolic A ring hydroxyl and the alkyl hydrophobic side 

chain attached to the A ring. Little structural similarity exists between anandamide, Ll9-

THC and CP 55,940, the potent synthetic cannabinoid agonist. Therefore, predicting the 

alignment of anandamide with the cannabinoid receptor is difficult. Also, due to structural 

and metabolic degradative pathway differences between anandamide and Ll9-THC, identical 

results in all pharmacological assays should not be expected. 

The observation that receptor binding for anandamide is greatly enhanced in the 

presence of PMSF, an amidase inhibitor, led to the reasonable assumption that PMSF 

inhibits enzymes that degrade anandamide (Childers, Sexton and Roy, 1994 ). The 

metabolic studies described herein confirmed that PMSF did prevent the conversion of 

anandamide to arachidonic acid when incubated with rat brain homogenate. Therefore, 

PMSF was included in [3H]-CP 55,940 displacement studies for anandamide and its 

analogs. The finding that anandamide's receptor affinity was enhanced several hundred 

fold is consistent with these metabolic studies and the previous observations of Childers et 

al. (1994). PMSF also exerted a minor influence (a two-fold shift) on CP 55,940's 

receptor affinity which is not likely to be metabolic. While the PMSF action on CP 55,940 
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Figure 8. The time course effects of either 5 mg/kg anandamide ( •) or 30 mg/kg of an 
alkylated anandamide analog (compound 16) (+) on tail-flick latency following i.v. 
administration. A separate group of animals (six mice per group) was tested for each dose. 
The means± S.E. are presented (n=6). 
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binding may lack biological significance, it underscores the importance of making 

appropriate corrections when conducting competition studies in the presence of PMSF. 

The identification of anandamide analogs with similar affinities in the presence and absence 

of PMSF indicates that the binding assays can be a useful tool for delineating between 

metabolically unstable and stable analogs. 

Cannabinoids produce a wide variety of pharmacological properties in different 

animal species. A tetrad of behavioral tests in the mouse, including antinociception, 

depression of spontaneous activity, catalepsy and reduction in body temperature, have 

proven to be highly predictive of cannabimimetic activity (Martin et al., 1981). In addition, 

the long duration of action of classical cannabinoids makes it possible to measure all four 

pharmacological effects in the same animal. For this study, anandamide analogs were 

evaluated for their ability to produce antinociception and depression of spontaneous 

activity. Since each test composing the cannabinoid tetrad has been shown to correlate with 

receptor binding, only two of the assays were selected to evaluate the anandamide analogs 

(Compton et al., 1993 ). As determined by Compton et al. ( 1993) for 60 cannabinoids, the 

correlation coefficients between cannabinoid receptor binding and hypomotility production, 

antinociception, temperature reduction and catalepsy were, respectively, 0.91, 0.90, 0.89 

and 0.85. In addition, the rapid onset of action of anandamide makes it impossible to 

measure all four pharmacological effects in the same animal. 

This pharmacological evaluation permitted the identification of several sites in the 

anandamide structure important for anandamide's binding to the cannabinoid receptor and 

potency in the behavioral assays used to assess cannabimimetic activity. The degree of 

saturation is critical for receptor affinity and in vivo potency. Either removal of several of 

the cis double bonds or addition of a double bond at carbon 17 decreased affinity and 

potencies in both behavioral measures. These results are consistent with those of Felder et 

al. ( 1993) who noted that the addition of cis double bonds at carbons 3 and 17 drastically 
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increased the Ki. They also reported that removal of the double bond at carbon 3 did not 

alter receptor affinity. Complete saturation and hydroxyl substitution with a fluorine group 

increased potency in the spontaneous activity and tail-flick assays. Although these 

alterations are not comprehensive enough to precisely define an active conformation of the 

arachidonyl backbone, they demonstrated the importance of its conformation and the 

feasibility of restricting the backbone to an active conformation. Another structural feature 

of primary importance is the ethanolamide. Increasing the N-substituent chain length by 

one or two carbons decreased affinity and antinociceptive potency, but did not produce 

higher ED50 values for spontaneous activity. While an N-substituent appears to be critical 

for receptor affinity and behavioral potency, a thorough characterization has not been 

completed. For example, substitution with a bulky sulfonamide group produced a 

compound with equal affinity to the receptor, as compared to anandamide. However, 

substitution with an equally bulky bromobenzenesulfonamide inactivated anandamide. As 

for the ethanolamide, substitutions for the hydroxyl constituent affected both binding and 

behavioral paradigms. Surprisingly, substitution of the hydroxy group with a sulfonamide 

only decreased affinity two-fold when compared to anandamide. Yet, substitution with the 

much smaller methoxy group produced an analog with low affinity and very little potency 

in the behavioral tests. 

Although the correlation was not high between receptor affinity and 

pharmacological potency, several explanations are possible to explain this result. 

Correlations made by Compton et al. (1993), which were higher than the anandamide 

correlations, were performed with a larger database of cannabinoids and with a greater 

range of structural diversity. With a larger number and wider range of compounds, a 

higher correlation might be obtained for anandamide compounds. On the other hand, 

anandamide may possess properties unique from other classical cannabinoids which need 

to be evaluated further. The possibility also exists that CP 55,940 and anandamide are 
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labeling different receptor subtypes; however, there is no direct evidence for receptor 

subtypes in brain at present. 

One also should not ignore the role that differences in pharmacokinetics and 

metabolism may play between in vitro and in vivo assays. It is interesting that the 

correlation between the two pharmacological assays was higher than between either assay 

and receptor binding. One possible explanation for the discrepancy between in vivo and in 

vitro data is that the pharmacokinetics may vary for each analog. Obviously, it is not 

feasible to establish the pharmacokinetics of every analog in an SAR study. Also, 

pharmacological differences may exist between in vitro and in vivo experimental 

conditions. For in vivo experiments, a rapid time course is used and the behavioral effects 

produced by anandamide and the analogs are measured soon after drug administration. In 

the receptor binding assay, however, a longer time course, or incubation period, was 

selected. Additionally, in the in vitro assay, drugs are exposed to a small amount of brain 

tissue; whereas, in vivo experiments result in drug exposure to all tissues of distribution. 

As information on the synthesis and metabolism of anandamide emerges, it may be 

possible to determine the extent that pharmacokinetics is a contributing factor in SAR 

studies. 

This SAR study has shown that it is possible to develop high affinity analogs. Two 

such analogs (compounds 12 and 15) produced higher binding affinities to the receptor 

than anandamide. Both of these analogs contained a fluorine substitution for the 2'-

hydroxyl; additionally, compound 15 was methylated at carbon 2. Fluorine is an electron­

dense atom, and substitution with fluorine might enhance receptor interaction. The 

compounds differed in respect to Ki's determined in the absence of PMSF. Compound 12 

had a much higher Ki in the absence of PMSF; compound 15 had a Ki lower than 

anandamide's with and without PMSF. The increased affinity in the presence of PMSF, 

however, did not correlate with increased behavioral potency for both analogs. Compound 
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12 had the same potency as anandamide for the spontaneous activity test, yet this analog 

had low potency in producing antinociception. At this point, reconciling the difference 

between binding affinity and potency is not possible. Further synthesis of similar high­

affinity analogs might lead to the development of compounds more stable and potent than 

anandamide. Potent and stable analogs would in turn facilitate studying the role of 

anandamide in in vitro and in vivo systems. 

Methylations were made at several sites on the anandamide backbone in the hopes 

of blocking enzyme metabolism. The presence of bulky groups near the site of enzymatic 

cleavage produces steric hindrance. It is well known that hydrolysis of either peptides or 

esters is inhibited with the addition of increasingly larger alkyl groups. Therefore, a series 

of anandamide derivatives were prepared with alkyl groups at either the nitrogen, I', 2 

carbon or a combination of alkylations. By alkylating these sites, we postulated that the 

amidase activity would be inhibited, and the resulting compounds would have increased 

metabolic stability. PMSF was shown to have little influence on the binding affinities of 

several of the methylated compounds. Thus, one would expect these compounds to be 

active in the behavioral assays and have a longer duration of action. These compounds 

were more potent than anandamide in depressing spontaneous activity. Their EDso's for 

SA and TF, with the exception of one compound, were similar to that of anandamide. 

When the time courses for anandamide and one of the methylated derivatives were 

compared, parallel time courses resulted. However, a semilog plot suggested a longer half­

life with the methylated compound. Therefore, predicting the stability of analogs in vivo 

based upon their sensitivity to PMSF should be done cautiously until there is a clearer 

understanding of the role that methylation is playing in receptor binding. 

Receptor affinity and potency in the behavioral assays were reduced with the 

addition of an ethyl group at carbon 2, and substitution with an isopropyl group at the same 

position caused a 10-fold decrease in affinity and almost complete inactivation of 
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pharmacological activity. Thus, as alkyl groups of increasing bulkiness were added to 

carbon 2, interaction with the receptor was decreased. A size restriction therefore exists for 

this site with alkyl chains composed of two or more carbons presenting a steric hindrance 

and preventing optimal receptor interaction. 

Additional evidence for steric hindrance due to larger alkyl chains was demonstrated 

for the carbon l' site. A methylation at carbon l' yielded an analog stable both in the 

presence and, importantly, absence of PMSF. This analog had the same affinity as 

anandamide for the cannabinoid receptor and also was pharmacologically active. When an 

isobutyl group was added at the l' carbon both the R- and S- forms of the compound did 

not bind in the absence of PMSF, and only the R-form bound with low affinity in the 

presence of the enzyme inhibitor. Also, both analogs had very low pharmacological 

activity. For both the l' and 2 carbons, receptor binding and behavioral activity depended 

upon the size of the alkyl group substituted at these sites. Addition of a single carbon 

produced analogs that were resistant to enzymatic degradation and, therefore, stable 

without PMSF. Substitution with larger groups also increased stability; however, these 

alkylations also reduced affinity and activity in the behavioral tests. 

To further explore the role of methylation and its influence upon stability of the 

compounds, two compounds were synthesized with methylations at the nitrogen of 

anandamide. Nitrogen methylation dramatically reduced affinity and pharmacological 

activity in the tail-flick assay, and no difference existed in binding with and without PMSF. 

Similar results were obtained for a compound methylated at both the nitrogen and carbon 2. 

The decreased activity of these N-methylated compounds might be due to disruption of a 

hydrogen bonding process at the receptor active site, as has been suggested for the proton 

in the phenolic hydroxyl of �9-THC (Semus and Martin, 1990). Thus, addition of a 

methyl group at the nitrogen prevents proper alignment and binding to the receptor. 
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In summary, these results indicated several areas of the structure which are 

important for receptor binding and behavioral potency. Alterations in the number of double 

bonds in the arachidonyl moiety, changes in the N-substituent, substitutions for the 

hydroxyl group and methylation at carbons adjacent to the nitrogen all influenced receptor 

affinity and pharmacological potency. Correlations between binding and pharmacological 

data were greatest when the analogs were either very potent or inactive. The greatest 

discrepancies existed between binding and behavioral data when the compounds possessed 

moderate binding affinity. This study clearly shows that stable and potent cannabinoid 

analogs can be developed from anandamide. 
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and SR 141716A Binding in Rat Brain 

Introduction 
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Following the discovery of the cannabinoid receptor in brain tissue, 

autoradiographic experiments were performed to localize the receptor in brain. 

Autoradiography of cannabinoid receptors from several mammalian species, including 

human, reveals a conserved and unique pattern of distribution (Herkenham et al., 1990). 

Binding was most dense in the outflow nuclei of the basal ganglia (the substantia nigra pars 

reticulata and globus pallidus), the hippocampus and the cerebellum. The high densities of 

receptors in the forebrain and the cerebellum explain the effects of cannabinoids on 

cognition and movement. High levels in the hippocampus provide a role for these 

receptors in cannabinoid impairment of memory. Sparse densities in the brainstem areas 

controlling cardiovascular and respiratory functions would explain why high doses of 

marijuana are not lethal. The distribution of cannabinoid receptors in rat brain also was 

determined with the aminoalkylindole [3H]-WIN 55,212-2 and [3H]-11-0H-L\9-THC­

DMH (Jansen et al., 1992; Thomas, Wei and Martin, 1992). Binding distribution was 

very similar between [3H]-CP 55,940, [3H]-WIN 55,212-2 and [3H]- l l -OH-L\9-THC­

DMH confirming that these structurally diverse compounds bind to the same receptor. 

The pattern of distribution of cannabinoid binding is consistent with data from in 

situ hybridization studies (Matsuda et al., 1990). High levels of mRNA in the 

hippocampus were found in granule cells of the dentate gyrus and in cells in the pyramidal 

and molecular layers. Expression of message for the cannabinoid receptor was also high in 
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cells within the superficial and deep layers of the cerebral cortex and amygdala. The pattern 

of distribution is consistent with in situ hybridization data using oligonucleotide probes 

complementary to rat cannabinoid receptor cDNA (Mailleux and Vanderhaegen, 1992). In 

the hippocampus, high levels of mRNA for the cannabinoid receptor were found in granule 

cells of the dentate gyrus and in cells of the pyramidal and molecular layers of the 

hippocampus. Message for the receptor was also prevalent within the superficial and deep 

layers of the cerebral cortex and amygdala. In the human brain the distribution of the 

mRNA encoding for the cannabinoid receptor also has been studied using in situ 

histochemistry and oligonucleotide probes (Mailleux, Parmentier and Vanderhaegen, 

1992). Microscopically, positive neurons were found in layers II-III and V-VI of the 

cerebral cortex, and in the hilus and the dendritic layers of the dentate gyms and Ammon's 

horn of the hippocampus. Macroscopically, a small hybridization signal was found 

throughout all layers of the cortex, in the pyramidal cell layer of the hippocampus, in the 

caudate and putamen and in the granular and molecular layers of the cerebellum. 

Binding experiments dealing with the fine neuronal localization of CB I receptors in 

the rat basal ganglia indicate that the receptors are not localized on dopamine cell bodies or 

terminals (Herkenham et al., 1991 b ). Cannabinoid receptors in the basal ganglia are 

localized to striatal neurons, with very dense localization to the axons and terminals in the 

globus pallidus, entopeduncular nucleus and substantia nigra pars reticulata. This 

localization implies that the facilitation of cannabinoids upon nigrostriatal dopamine 

function might involve indirect, local and/or distal neuronal circuits. Within the basal 

ganglia, cannabinoid receptors occur both pre- and postsynaptically. In the cerebellum, 

cannabinoid receptors are neuronally localized to granule cell axons in the molecular layer 

(Herkenham et al., 1991a). 

In addition to ti9-THC, bicyclic compounds, dimethylheptyl analogs of THC and 

arninoalkylindoles, anandamide and SR 141716A have been added to the list of stmcturally 
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diverse compounds that bind to the cannabinoid receptor. Although anandamide produces 

many of the same effects as other psychoactive cannabinoids, differences do exist. 

Comparison between anandamide and ,:19-THC revealed that anandamide was 4- to 20-fold 

less potent and had a shorter duration of action than ,:19-THC (Smith et al., 1994). 

Anandamide also acted as a partial agonist at the N-type calcium channels (Mackie, Devane 

and Hille, 1993). Anandamide produces antinociception like other cannabinoids, but 

anandamide is not active when administered i.c.v. (Smith et al., 1994). Also, unlike other 

cannabinoids, anandamide's antinociception is not blocked by the kappa antagonist nor-

BNI (Smith et al., 1994). 

The structure-activity relationship studies in the first part of this dissertation 

provided evidence that anandamide was binding to the cannabinoid receptor and producing 

pharmacological effects in mice, such as depression of spontaneous locomotor activity and 

generation of antinociception. The next objective in this dissertation was to determine 

whether anandamide might interact differently with receptors in some brain areas by using 

the technique of receptor autoradiography. Since anandamide does not have high affinity 

for the cannabinoid .receptor, in comparison to other synthetic high-affinity THC analogs, 

[3H]-anandamide was not used directly to Habel receptors. Performing autoradiography 

with compounds possessing weak affinity to a receptor introduces many technical 

problems. Weak ligands diffuse from the receptor, and the resulting autoradiogram is not 

clear. Fuzzy images cannot be accurately analyzed. To avoid this problem, [3H]-CP 

55,940 was selected. In these experiments anandamide (unlabeled) competed with [3H]­

CP 55,940 for binding to the cannabinoid receptor. The autoradiograms thus depict 

anandamide's displacement of labeled CP 55,940. The recent discovery of the cannabinoid 

antagonist SR 141716A also provided the opportunity to study the binding of this 
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compound. SR 141716A was not available in a tritiated form; therefore, autoradiograms of 

SR 141716A also show its displacement of labeled CP 55,940. 

The purpose of the autoradiographic experiments was to determine if differences 

exist between the cannabinoid receptor population which binds CP 55,940, SR 141716A 

and anandamide. The technique of autoradiography was used to quantitatively compare 

cannabinoid receptor affinities, binding patterns and densities of anandamide, CP 55,940 

and SR 141716A in different brain regions. If anandamide, CP 55,940 and SR 141716A 

are binding to the same cannabinoid receptor (CB 1) in the brain, then the binding 

localization should be the same in different brain regions for all three compounds. 

Differences in binding densities between regions for the three compounds might suggest 

that a receptor subtype for the central cannabinoid receptor exists. Furthermore, a second 

objective was to determine cannabinoid receptor affinities for anandamide, SR 141716A 

and CP 55,940 and compare the affinities for each compound between brain regions. 

Differences in affinities would indicate that a particular drug was binding to a brain region 

in a different manner than to cannabinoid receptors in other regions. Binding displacement 

curves from selected brain regions also were analyzed for parallelism for each compound. 

Methods 

Animals. Male Sprague-Dawley rats (150 - 200 g) from Harlan Laboratories 

were maintained on a 14: 10 hr light/dark schedule and freely received food and water. 

Chemicals. [3H]-CP 55,940 was purchased from DuPont NEN (Wilmington, 

DE). CP 55,940 was a gift from Dr. L. Melvin of Pfizer Inc., Central Research Division 

(Groton, CT), and anandamide was kindly provided by Dr. Raj K. Razdan of Organix Inc. 

(Woburn, MA). Both compounds were prepared as 1 mg/ml stock solutions in absolute 

ethanol and stored at -20 °C. SR 141716A was obtained from Pfizer Inc. (Groton, CT), 
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and prepared as a 1 mg/ml solution in absolute ethanol. PMSF was dissolved in absolute 

ethanol as a 20 mg/ml stock solution. 

Tissue Preparation. Following decapitation, rat brains were quickly removed 

and frozen in 2-methylbutane (-50 °C). The brains were embedded in M-1 embedding 

matrix and stored at -70 °C until sectioning. Brains were mounted onto cryostat chucks 

with TFM tissue freezing medium. Consecutive coronal brain sections (16 µm) were thaw-

mounted onto slides coated with 0.5% gelatin and 0.05% chromium potassium sulfate. 

Sections were made at the stereotaxic coordinates 1.2 mm from bregma, 0.48 mm from 

bregma, -5.2 mm from bregma and -12.8 mm from bregma (Paxinos and Watson, 1986). 

Sections were stored desiccated at -70 °C prior to use in binding assays. 

In situ Cannabinoid Bindin2 Assays. Assay conditions for cannabinoid 

binding have been described previously (Herkenham et al., 199 l c). Saturation 

experiments were first performed to determine the l<{! of [3H]-CP 55,940. This value then 

was compared to values reported in the literature. Coronal sections containing primarily 

frontal cortex and caudate-putamen ( 1.2 mm from bregma) were used for Scatchard 

analysis. Slides were allowed to return to room temperature and incubated for 2 hr in slide 

mailers at 37 °C in reaction buffer (50 mM Tris-HCI with 5% BSA, pH 7.4) Total binding 

was determined with seven concentrations of [3H]-CP 55,940 (1.13, 2.3, 4.5, 7.5, 15, 

22.5 and 30 nM); nonspecific binding mailers additionally contained 1 µM CP 55,940 

(non-radiolabeled). Saturation experiments were also performed with 50 µM PMSF in the 

incubation buffer. Following incubation, slides were washed for 4 hr at O °C in 50 mM 

Tris-HCI with 1 % BSA (pH 7.4). Sections were scraped from the slides with Whatman 

GF/C filters. The filters were placed in scintillation vials, and the tissue was solubilized 

overnight with 1.0 ml of TS-2. Samples were acidified with 10 µl of glacial acetic acid and 

counted by liquid scintillation spectrometry. Transformation of the data and calculation of 



www.manaraa.com

91 

Kl values was accomplished using the LIGAND computer software developed by Munson 

and Rodbard (Munson and Rodbard, 1980) as supplied by Biosoft Inc. (Cambridge, 

U.K.). 

Competition for f3H]-CP 55,940 Bindini:. Due to the reported instability 

of anandamide (Childers, Sexton and Roy, 1994; Deutsch and Chin, 1993), optimal 

binding conditions were first determined in the presence and absence of the enzyme 

inhibitor PMSF. In the competition experiments, reaction buffers, incubation temperatures 

and times were identical to the in situ binding assay described above. Sections were made 

from 0.48 mm from bregma, -5.2 from bregma and -12.8 mm from bregma. For CP 

55,940, SR 141716A and anandamide, nonspecific binding was determined using 10 µM 

CP 55,940, and total binding was determined for 10 nM [3H]-CP 55,940 (approximately 

40% receptor occupation). Eight concentrations of CP 55,940 ranging from 0.1 to 300 nM 

were assayed; concentrations of anandamide ranged from 0.0 I to 10 µM, and 

concentrations of SR 141716A were 0.001 to 10 µM. Each experiment was conducted in 

at least triplicate. For anandamide displacement assays, additional experiments were 

performed either with 50 µM PMSF in the incubation buffer or with sections pretreated for 

30 min in a buffer containing 50 µM PMSF prior to exposure of 50 µM PMSF in the 

incubation buffer. Anandamide sections were wiped from the slides, solubilized and 

counted. Optimal conditions for anandamide competition experiments occurred when 

sections were pretreated for 30 min with PMSF and exposed to PMSF in the incubation 

buffer. 

[3H]-CP 55.940 Autoradioi:raphy. Following the wash, slides were rapidly 

dried with a stream of cool air and stored in a desiccator overnight at 4 °C. Sections were 

apposed to tritium-sensitive film with [3H]-microscales for three weeks before developing 

with a D-19 developer. Developed films were analyzed using the NIH Image 1.49 

program. Levels of transmittance were converted to dpm/mg protein using a polynominal 



www.manaraa.com

92 

curve fit of the standards. Brain structures were outlined, and optical density in each area 

was measured. Curve-fitting of the displacement data and determination of Ki and Bmax 

values for anandamide, CP 55,940 and SR 141716A were done using EBDA software. Ki 

and Bmax values for anandamide in the substantia nigra and the molecular layer of the 

cerebellum were determined from autoradiograms apposed to film for one week. 

Statistical Analysis. Significant differences between Ki values were 

determined using the ANOV A analysis (Scheffe post-hoc analysis). To determine if curves 

were parallel, data from a representative displacement curve from each brain area for 

anandamide, SR 141716A and CP 55,940 were analyzed using the ALLFIT curve-fitting 

program. Bmax values were compared by linear correlations for Anandamide and CP 

55,940 and SR 141716A and CP 55,940. 

Results 

Cannabinoid receptor affinity (Kct) was determined for CP 55,940 and expressed as 

a Kct value. Saturation experiments were performed both in the presence and absence of the 

enzyme inhibitor PMSF. Without PMSF a Kct value of 15.3 ± 1.2 nM (n = 5) was 

calculated, which correlated with value of 15 ± 3 nM obtained by Herkenham et al. (1990). 

In the presence of PMSF a Kct value of 12.3 ± 2.1 nM (n = 3) resulted, which is not 

statistically different from the Ki value obtained without PMSF. The presence of PMSF 

did not influence affinity to the cannabinoid receptor. Thus, all Ki's were calculated using 

the Kct value of 15.3 nM. 

Since in the first part of this dissertation, it was determined that anandamide is 

susceptible to enzymatic cleavage, conditions were established for determining optimized 

receptor binding with anandamide in autoradiography experiments were established. 

Without inclusion of PMSF a Ki of 8030 ± 1110 nM (n = 3) resulted. PMSF (50 µM) 
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Total Binding 

Nonspecific Binding 

Figure 9. Autoradiogram of total and nonspecific binding of [3H]-CP 55,940 to coronal 
sections of rat brain. 
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Frontal Cortex Medial Caudate-Putamen 

Parietal Cortex Lateral Caudate-Putamen 

Figure 10. Autoradiogram of [3H]-CP 55,940 binding to a coronal section of rat brain 
0.48 mm from bregma. 
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Occipital Cortex Dentate Gyrus CAI CA3 

Entorhinal Cortex Substantia Nigra, Reticular 

Figure 11. Autoradiogram of [3H]-CP 55,940 binding to a coronal section of rat brain 
-5.2 mm from bregma. 
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Molecular Layer 

Figure 12. Autoradiogram of (3H]-CP 55,940 binding to a coronal section of rat brain 
-12.8 mm from bregma. 
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SR 141716A (30 nM) 

CP 55,940 (3 nM) 

Anandamide (300 nM) 

Figure 13. [3H]-CP 55,940 displacement by SR 147161A (30 nM), CP 55,940 (3 nM) 

and anandamide (300 nM). 
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Figure 14. Anandamide, SR 141716A and CP 55,940 displacement of [3H]-CP 55,940 in 
the lateral caudate-putamen. The curves are representative displacement curves. 
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then was added to the incubation buffer during the 2 hour reaction period. The Ki 

decreased to 2320 ± 540 nM (n = 6), but a Ki in this range demonstrates weak receptor 

affinity and suggests that anandamide is probably being degraded. Thus, slices were 

pretreated for 30 minutes with 50 µM PMSF and exposed to PMSF during the incubation 

time. A Ki of 608 ± 210 nM (n = 3) resulted from these assay conditions. These results 

indicate that anandamide is degraded without the addition of an enzyme inhibitor. 

Therefore, slices were exposed to PMSF before and during incubation for autoradiography 

experiments using anandamide. 

Levels and patterns of cannabinoid receptor binding ([3H]-CP 55,940) were in 

agreement with previously reported data (Herkenham et al., 1991c; Jansen et al., 1992; 

Thomas, Wei and Martin, 1992). High levels of binding were found in the substantia nigra 

pars reticulata, molecular layer of the cerebellum, dentate gyrus and CA 1 and CA3 regions 

of Ammon's horn. Moderate levels of cannabinoid receptor binding was observed in all of 

the cortical areas and throughout most of the brain. Little binding was found in the 

brainstem or the corpus callosum indicating a lack of receptors in these areas. 

A qualitative examination of the autoradiographic film demonstrates that only 

nonspecific binding results when an excess of unlabeled CP 55,940 ( lµM) is added 

(Figure 9). Sections were made at three points in the rat brain. The stereotaxic coordinates 

were 0.48 mm, -5.2 mm and -12.8 mm from bregma. At 0.48 mm from bregma 

measurements were made in the lateral and medial caudate-putamen and the frontal and 

occipital cortices (Figure 10). At -5.2 mm from bregma measurements were made from the 

CAI and CA3 regions from Ammon's horn, dentate gyrus, entorhinal and occipital cortices 

and substantia nigra (Figure 11 ). At -12.8 mm from bregma measurements were made 

from the molecular layer of the cerebellum (Figure 12). 

Also apparent from a visual inspection of the developed brain images, is the 

similarity of the displacement patterns for SR 141716A, CP 55,940 and anandamide. 
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Table 5. Ki values for anandamide, CP 55,940 and SR 141716A. 

Anandamide CP-55,940 SR 141716A 

Brain Region K K K 

(nM) (nM) (nM) 

Entorhinal Cortex 956** 10.2 ** 36±4 

Parietal Cortex 713 ± 7 6.7 ± 2.1 35 ± 14 

Occipital Cortex 328 ± 86 17.5±7.8 34± 7 

Frontal Cortex 661 ± 145 8.5 ±0.2 26± 10 

Medial Caudate-Putarnen 566 ± 93 9.0± 2.0 31 ± 8 

Lateral Caudate-Putamen 515 ± 68 5.3 ± 1.3 52± 17 

Dentate Gyms 400± 72 8.5 ± 0.7 36 ± 5* 

CAI 438 ± 87 6.0±0.9 24± 3* 

CA3 489 ± 176 7.4 ± 1.3 38 ± 5* 

Substantia Nigra 512 ± 169 7.3 ±2.9 95 ± 29* 

Molecular Layer of the 861 ± 32 12.5 ±4 114±19* 

Cerebellum 
*n = 6 

**n = 2 

100 
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Table 6. Bmax values for anandarnide, CP 55,940 and SR 141716A. 

Anandamide CP-55,940 SR 141716A 

Brain Region Bmax Bmax Bmax 

(pM) (pM) (pM) 

Entorhinal Cortex 44±7 28 ± 7 48 ± 14 
Parietal Cortex 50±2 34±4 66± 6 
Occipital Cortex 59±7 42±7 43 ±2 
Frontal Cortex 76 ± 11 56± 7 94 ± 6 

Medial Caudate-Putamen 108±7 44±2 107 ± 13 
Lateral Caudate-Putamen 185 ± 33 109 ±9 189 ± 19 

Dentate Gyms 211 ± 13 110 ± 22 149 ± 16* 
CAI 258 ± 22 151 ± 29 147 ± 15* 
CA3 771 ** 163 ± 33 150 ± 20* 
Substantia Nigra 209±4 212 ± 34 204 ± 35* 

Molecular Layer of the 263 ± 44 250 ± 55 248 ± 22* 
Cerebellum 

*n = 6 
**n = 2 

101 
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55,940. 
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Figure 13 shows that binding density, qualitatively, appears not to differ between SR 

141716A, CP 55,940 and anandamide at 30 nM, 3 nM and 3000 nM, respectively. These 

concentrations represent approximately 50% displacement of [3HJ-CP 55,940. 

To quantitate results from autoradiography, measurements were made from the 

developed autoradiographic film of selected brain areas, and displacement curves were 

constructed. Figure 14 shows representative displacement curves for anandamide, SR 

141716A and CP 55,940 in the lateral caudate-putamen. Since anandamide is a weaker 

ligand for the cannabinoid receptor, anandamide's displacement curve lies to the right of 

CP 55,940's curve. The curve for SR 141716A is to the right of CP 55,940's curve and to 

the left of anandamide's curve. SR 141716A has a higher affinity to the cannabinoid 

receptor than anandamide and has a lower affinity than CP 55,940. CP 55,940 is more 

potent than anandamide and SR 141716A. Similar curves were generated from the other 

regions. 

Analysis of displacement data by EBDA generated Ki and Bmax values. Ki values 

reflect the receptor affinity of the displacing compound, and Bmax values are a measure of 

receptor number or density. Ki values for anandamide, SR 141716A and CP 55,940 from 

each brain area are found Table 5. The average Ki value for anandamide in the rat brain 

homogenate binding assay in the presence of PMSF was 90 nM, and the average Ki value 

for anandamide in the autoradiography experiments was 548 nM. Higher Ki and Kd values 

are obtained using in situ binding than in homogenate membrane binding. These 

differences are consistent for numerous ligands and probably reflect methodological 

differences between the two types of assays (Herkenham et al., 199 l c). Average Ki values 

were 9 nM for CP 55,940 and 47 nM for SR 141716A. Binding affinities were analyzed 

statistically to determine if differences existed for anandamide's affinity to the central 

cannabinoid receptor between different brain regions. Statistical analyses also were 

performed for SR 141716A and CP 55,940. Binding affinities for anandamide, SR 
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141716A and CP 55,940 were not statistically significant between brain areas. The K i for 

the entorhinal cortex for anandamide and CP 55,940 were not included in the statistical 

analysis since the value was determined from an average of only two experiments. The 

cannabinoid receptor had the same affinity for anandamide in all regions analyzed. Binding 

affinities for CP 55,940 and SR 141716A also did not differ between brain regions. 

A representative displacement curve was selected from each brain region for each 

compound. The curves for anandamide, CP 55,940 and SR 141716A were analyzed for 

parallelism by the program ALLFIT. All displacement curves for anandamide and CP 

55,940 from each brain area were parallel. All displacement curves for SR 141716A, 

except for the entorhinal curve, were parallel. 

Bmax values for anandamide, CP 55,940 and SR 141716A are summarized in Table 

6. Bmax's are listed from low to high based upon the values for CP 55,940. Bmax values 

are listed in Table 6 according to areas with lower values (the cortices), areas with moderate 

values (the caudate-putamen) and areas with higher values. The molecular layer of the 

cerebellum had the highest Bmax for anandamide (with the exception of CA3), CP 55,940 

and SR 141716A. For an unknown reason, the Bmax for anandamide in the CA3 region 

was extremely high and was calculated from only two assays; therefore, it was not used 

when determining correlations between anandamide and CP 55,940. The entorhinal cortex 

had the lowest Bmax's for anandamide and CP 55,940. The lowest value for SR 141716A 

was in the occipital cortex. To compare densities, linear correlations were made between 

CP 55,940 and SR 141716A. Correlations also were made between CP 55,940 and 

anandarnide. Good correlation existed when comparing Bmax values for anandamide to the 

Bmax values of CP 55,940 (r = 0.89) (Figure 15). A correlation coefficient of 0.92 was 

obtained when Bmax values for SR 147161A were compared to Bmax values of CP 55,940. 



www.manaraa.com

105 

Discussion 

According to autoradiographic studies, the distribution of the cannabinoid receptor 

is heterogeneous in several mammalian species, conserved and neuronally located 

(Herkenham et al., 1990; Herkenham et al., 1991b; Herkenham et al., 1991c). The 

densest binding occurs in the basal ganglia (substantia nigra pars reticulata, globus 

pallidus, entropeduncular nucleus and lateral caudate putamen), and the molecular layer of 

the cerebellum. Binding in these regions may explain cannabinoid interference with 

movement. Intermediate levels of binding were found in the CA pyramidal cell layers of 

the hippocampus, the dentate gyrus and layers I and VI of the cortex. �9-THC disrupts 

short-term memory in humans (Chait and Pierri, 1992). Cannabinoid effects on memory 

and cognition are consistent with receptor localization in the hippocampus and cortex. The 

hippocampus stores memory and codes sensory information. The presence of cannabinoid 

receptors in regions associated with mediating brain reward (ventromedial striatum and 

nucleus accumbens) suggests an association with dopamine neurons. Sparse levels were 

detected in the brainstem, hypothalamus, corpus callosum and the deep cerebellum nuclei. 

Low levels of receptors in brainstem areas controlling cardiovascular and respiratory 

functions is also consistent with the lack of lethality of marijuana. 

The first step in autoradiographic binding, or any receptor binding technique, is to 

establish optimum binding conditions. The incubation times, temperature and BSA content 

were based upon those of Herkenham et al. (1991). A Scatchard analysis of saturation 

experiments using frontal cortex from the rat brain produced a Kct (15.3 nM) that 

corresponds to other Kct values in the literature (Herkenham et al., 1991; Thomas et al., 

1992). Since anandamide is degraded in homogenate binding, it also was necessary to 

determine optimal binding conditions for anandamide. Consistent results were obtained 

when slices were pretreated with PMSF and exposed to PMSF during the reaction 

incubation. These results confirm previous reports of anandamide's instability in a 
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biological system. Since slices had to be both pretreated and exposed to PMSF during the 

entire two hour experiment, this finding suggests that levels of the enzyme that degrade 

anandamide are high in the brain. If anandamide is a neurotransmitter, then mechanisms 

must exist in the CNS to rapidly remove anandamide and prevent continuous stimulation. 

Therefore, one would not expect an endogenous compound to possess great stability. 

Development of more stable analogs would eliminate the need of exposing brain tissue to 

enzyme inhibitors. PMSF inhibits a wide variety of enzymes, not just amidases. 

Therefore, it was necessary to determine if PMSF produced an effect upon cannabinoid 

receptor affinity, as determined from saturation experiments. Unlike the homogenate 

receptor binding assay, PMSF did not influence cannabinoid receptor affinity for brain slice 

binding. The Kd determined in the presence of PMSF was not statistically different from 

the Kci obtained in the absence of PMSF. It is unknown why PMSF caused a two-fold 

shift in the receptor affinity in the homogenate receptor assay, but the shift is probably due 

to methodological differences between slice and homogenate binding. 

Once conditions were established, a series of autoradiography experiments were 

performed using [3H]-CP 55,940 to determine if anandamide, SR 141716A and CP 

55,940 were binding to the same receptor in the brain. Following three weeks of 

apposure, the resulting autoradiograms showed the displacement of [3H]-CP 55,940 by 

either anandamide, SR 141716A or CP 55,940 in the following brain areas: lateral and 

medial caudate-putamen, frontal, occipital, entorhinal and parietal cortices, dentate gyrus, 

substantia nigra and the molecular layer of the cerebellum. These areas were selected since 

cannabinoids affect the functioning of these regions. Also, they are all large enough so that 

a sufficient number of consecutive 16 µm slices can be made. Several of the areas, 

including the molecular layer of the cerebellum and the substantia nigra, have very dense 

levels of receptors. The dentate gyrus, CA 1, CA3 and lateral caudate-putamen also have 
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dense receptor populations. The cortical regions have moderate levels of cannabinoid 

receptors. 

The purpose of this section of the dissertation was to quantitate the binding of 

anandamide, SR 141716A and CP 55,940 in selected brain regions. Extensive 

autoradiographic experiments have been performed with CP 55,940 (Herkenham et al., 

1990). However, no such experiments have been performed with anandamide or SR 

141716A. Results from these experiments would answer the question of whether CP 

55,940, anandamide and SR 141716A were binding to the same receptor in the same 

manner. Analysis of measurements made from the developed film produced Ki and Bmax 

values. Ki values are a measure of a compound's affinity for a receptor; Bmax values 

represent the density of receptors. For anandamide, CP 55,940 and SR 141716A, no 

statistical difference existed between their Ki's in different brain regions. The Ki values 

from the entorhinal cortex for anandamide and CP 55,940 were not included in the 

statistical analysis since they were calculated from just two experiments. Also, Ki values 

for the substantia nigra and the molecular layer of the cerebellum were inconsistent when 

determined from film apposed for three weeks. Values for these two regions were 

therefore determined from film apposed for one week. Since anandamide is a weak ligand, 

it is possible that at the lower concentrations in anandamide's displacement curves the 

percentage of displacement is less accurate because the amount of displacement is 

overshadowed by the high numbers of receptors. If any of these compounds were binding 

to a receptor subtype possessing either a higher or lower Ki from the other regions, a 

statistical difference would result. No such differences were found for CP 55,940, 

anandamide or SR 141716A. 

A second objective was to analyze representative curves for parallelism from each 

region for anandamide, SR 141716A and CP 55,940. Representative displacement curves 

from each brain region for anandamide were analyzed using the statistical program ALLFIT 
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to determine if they were parallel. Differences in parallelism would provide evidence that a 

compound was interacting with the cannabinoid receptor in a different manner from other 

regions. All 11 curves for anandamide were parallel, as were curves for CP 55,940. For 

an unknown reason, the entorhinal cortex curve for SR 141716A was not parallel to the 

other brain regions analyzed. Thus, these three compounds appear to bind to the CB l 

receptor in a similar manner. 

Cannabinoid receptor densities (Bmax's) were calculated for each brain region for 

anandamide, SR 141716A and CP 55,940. The purpose of calculating Bmax values for 

each region was to determine if one compound might bind more or less in one brain area 

than in other regions. The relationship between Bmax values for SR 141716A and CP 

55,940 and anandamide and CP 55,940 were compared by linear plots of the respective 

values, and correlation coefficients were determined. A high correlation was obtained both 

when comparing the Bmax values of SR 141716A and anandamide to those of CP 55,940. 

These correlations indicate that the three compounds are binding to the same population of 

receptors when comparing brain regions. 

Several conclusions may be drawn from these results. The lack of difference 

between receptor affinity, receptor distribution and parallelism of the displacement curves 

indicates that anandamide, SR 141716A and CP 55,940 are binding to the same receptor in 

the same manner. No evidence of receptor subtypes in the brain was found. 
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IV. General Discussion 

Marijuana is one of the most widely abused drugs throughout the world, yet it also 

has great therapeutic potential and has been used for centuries for medicinal purposes. The 

psychoactive constituent of marijuana, �9-THC, produces a myriad of pharmacological 

effects in animals and humans. Great progress has been made in the past ten years 

regarding our understanding of the mechanism of action of cannabinoids. Cannabinoid 

receptors have been characterized both centrally and peripherally, and the distribution of the 

central cannabinoid receptor has been mapped throughout the central nervous system. The 

cellular mechanism of action of cannabinoids also has been more clearly defined. The 

discovery of anandamide as an endogenous ligand for the cannabinoid receptor creates the 

possibility of discovering a novel neurochemical system. The actions of cannabinoids and 

anandamide can better be elucidated with the recent discovery of an antagonist for the 

receptor. These advancements provide powerful tools for future research and should 

contribute to the expansion of our knowledge of the cannabinoid field. 

These initial in vitro and in vivo experiments provided information that anandamide 

produced its effects by interacting with the cannabinoid receptor. Yet, differences do exist 

between anandamide and other cannabinoid agonists. Anandamide acted as a partial 

agonist at N-type calcium channels, whereas other cannabinoids inhibit N-type channels by 

acting as full agonists (Mackie, Devane and Hille 1993). �9-THC decreased choice 

accuracy as the retention time increased in delayed nonmatching to sample memory task 

performance; anandamide did not affect memory in the same manner. Anandamide was 

less potent than �9-THC in inhibiting adenylyl cyclase (Vogel et al., 1993) and the 
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electrically evoked twitch response of the mouse isolated vas deferens (Devane et al., 1992; 

Pertwee et al., 1993). Anandamide was also less potent than �9-THC in producing 

antinociception, hypothermia, depressed locomotor activity and catalepsy. After i.v. 

administration anandamide had a shorter duration of action for catalepsy and hypothermia 

(Smith et al., 1994 ). Anandamide differed from �9-THC in that anandamide produced all 

cannabinoid effects after i. t. administration except catalepsy, and that after i.p. 

administration the only effect anandamide produced to a significant degree was locomotor 

inhibition (Smith et al., 1994 ). Furthermore, the kappa opioid antagonist, nor-BNI, which 

blocks �9-THC-induced antinociception, did not alter antinociception after anandamide 

administration (Smith et al., 1994 ). This lack of antagonism for anandamide provided 

evidence for a distinct mechanism of action of anandamide-induced antinociception from 

that of �9-THC. Thus, questions remain as to whether anandamide produces all of its 

central effects through the CB I receptor. 

One of the purposes of this dissertation was to examine structure-activity 

relationships in anandamide analogs. In order to verify that �9-THC and anandamide share 

a common receptor, SAR studies were conducted for correlative purposes. Extensive SAR 

studies with �9-THC have resulted in a three-point receptor attachment theory. �9-THC is 

believed to interact with cannabinoid receptors through a free phenolic hydroxyl group, an 

appropriate substituent at the C9 position, and a lipophilic side chain (Binder et al., 1984; 

Howlett et al., 1988). SAR have also helped to develop more potent analogs of the 

psychoactive constituents of marijuana, such as the bicyclic compounds and dimethylheptyl 

derivatives. Although SAR studies suggested that cannabinoids produced their effects 

through a specific receptor, initial binding studies conducted with [3H]-�9-THC were not 

successful because �9-THC does not possess high affinity for the receptor and is highly 

lipophilic. The development of potent cannabinoids like CP 55,940 allowed for the 
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characterization of the cannabinoid receptor. [3H]-CP 55,940 also was used to localize the 

cannabinoid receptor in rat brain slices (Herkenham et al., 1991 ). 

The shorter duration of action of anandamide could arise from dissimilarities in 

metabolism. The likelihood that metabolism plays a role in the actions of anandamide was 

raised with reports that PMSF, an enzyme inhibitor, interfered with the degradation of 

anandamide (Childers et al., 1993; Deutsch and Chin, 1993). PMSF did not inhibit a 

synthase enzyme which catalyzes the formation of anandamide from arachidonic acid and 

ethanolamine. Initial competition binding studies with [3H]-WIN 55,212-2 suggested that 

anandamide had low affinity for the receptor (Childers, Sexton and Roy, 1994). These 

researchers discovered that the addition of PMSF to the membrane preparation dramatically 

enhanced anandamide's affinity for the receptor. Subsequent binding studies performed in 

our laboratory supported this finding in that the binding affinity of anandamide was 

enhanced several hundred fold with the addition of PMSF (Smith et al., 1994). Since the 

development of more potent analogs of i'.l9-THC greatly facilitated studying the 

pharmacological and physiological role of cannabinoids, a second objective was to develop 

metabolically stable analogs of anandamide. Fully investigating the mechanism of action of 

metabolically unstable and weak compounds is difficult. 

To accomplish the two main objectives of understanding structural requirements 

important for anandamide's interaction with the central cannabinoid receptor and 

developing metabolically stable derivatives of anandamide, a series of analogs was 

synthesized with alterations to the main structural features of anandamide. Anandamide is 

composed of an arachidonyl group linked to ethanolamine through an amide bond. Double 

bonds are located at carbons 6, 8, 10 and 13, and a hydroxyl group is located at carbon 2'. 

Changes were made in the level of saturation of anandamide; substitutions were made for 

the ethanolamide and hydroxyl groups, and alkylations were made at certain sites of 

anandamide. The analogs were evaluated for their ability to displace [3H]-CP 55,940 in a 
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filtration binding assay using rat brain membranes in the presence and absence of the 

PMSF. Behavioral activity was assessed by the ability of the analogs to produce 

hypomotility and antinociception in mice. The receptor affinities of anandamide analogs 

were correlated with in vivo pharmacological potencies in the hypomotility and 

antinociception assays and compared to those of anandamide. Thus, these results would 

provide information about the structural requirements important for anandamide's 

interaction with the cannabinoid receptor. 

Results from these studies allowed for the identification of sites in anandamide's 

structure which were important for anandamide's interaction with the cannabinoid receptor 

and potency in the behavioral assays used to assess biological activity. The first series of 

analogs had alterations in the level of saturation. Removal of all of the cis double bonds 

with the exception of the double bond located at C 10 or addition of another cis double bond 

at C 17 produced compounds with lower affinity and weaker potency. Complete saturation 

obliterated antinociception. Although these changes are not comprehensive, conclusions 

may be drawn that the level of saturation is critical to anandamide's interaction with the 

cannabinoid receptor. The purpose of the double bonds is probably to introduce rigidity 

and restrict the movement of carbon tail. The double bonds force the carbon chain to 

assume a more restricted form. The arrangement of the double bonds more than likely 

restricts the backbone of anandamide to an active conformation and allows proper 

alignment of anandamide with the cannabinoid receptor. 

One of the features of �9-THC important to receptor affinity and pharmacological 

potency is the phenolic A ring hydroxyl. One may speculate that the hydroxyl group of 

anandamide corresponds to the hydroxyl group of �9-THC. To test this hypothesis, 

several analogs were made with substitutions of the hydroxyl group. Substitutions with 

two bulky groups (sulfonamide and phenoxy) produced compounds that bound to the 

receptor with higher affinities than anandamide with and without PMSF; the difference in 
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affinities without PMSF was not as great as anandamide's affinity without PMSF. Yet, 

these substitutions interfered with the ability to produce antinociception. Although 

substitution with bulky groups produced weaker compounds, substitution with a much 

smaller methoxy group produced a basically inactive compound. The most interesting 

substitution involved a compound with a fluorine group; this analog had a IO-fold higher 

affinity to the receptor, but only in the presence of PMSF. Substitution of the ethanolamide 

group with bulkier substituents yielded analogs that did not bind as well to the receptor. 

The length of the chain attached to the nitrogen was important; increasing this chain 

decreased affinity and potency in producing antinociception. Based upon these results, one 

may conclude that the hydroxy group interacts with the receptor. Addition of bulky groups 

probably interfered with proper receptor alignment. Thus, the resulting analogs were not 

as effective agonists, and, consequently, they had reduced affinity and potency in the 

behavioral assays. The fluorine substitution actually produced a compound that bound 

better to the receptor, but it was not metabolically stable. Since fluorine is an electron-

dense atom, it may allow better interaction with the active site of the cannabinoid receptor. 

Since the enzyme that metabolizes anandamide acts by cleaving the amide bond, 

compounds were synthesized that might block the access of the enzyme to this site. 

Methylations at carbons 2 and l' and a dimethylation at carbon 2 presumably enhanced the 

stability of the anandamide analogs as evidenced by an increase in their receptor affinity in 

the absence of PMSF. Thus, one may reason that the methylations in these compounds 

provided resistance to enzymatic degradation. Receptor affinity appears to be least affected 

by the substitution at carbon 2 versus carbon l '. When larger and bulkier alkyl groups 

were added to these sites, receptor interaction decreased. Furthermore, replacement of the 

hydrogen attached to the nitrogen with a methyl group decreased both affinity and potency. 

The methyl group at the nitrogen prevented proper receptor alignment. Stable compounds 
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can be produced by methylating the anandamide structure, but a restriction on the size and 

placement of the attached alkyl groups exists. 

The most promising analog in this study was a compound methylated at carbon 2 

with a fluorine substitution for the hydroxy. The binding affinity of this analog was greater 

than anandamide in both the presence and, importantly, absence of PMSF. The 

combination of methylation and fluorine substitution produced a compound that appeared to 

be more stable. It also was more potent than anandamide in reducing spontaneous activity 

and had the same potency in producing antinociception. This compound provides an 

excellent model upon which to modify and synthesize compounds that have greater affinity 

and in vivo potency than anandamide. 

It is not clear why the potency and receptor affinity of these methylated analogs 

were not enhanced in a comparable fashion. Anandamide is presumed to be rapidly 

degraded in vivo because of its relatively low potency. However, there are numerous other 

pharmacokinetic factors, coupled with its relatively low receptor affinity, which could 

account for its low in vivo activity. Only direct pharmacokinetic studies will answer these 

questions. It should be noted that �9-THC and anandamide have time courses in tail-flick 

(only) which are not too dissimilar when equi-active doses are administered (Smith et al., 

1994 ). Anandamide may be vulnerable to enzymatic degradation in the receptor binding 

assay because of the long incubation period. Furthermore, anandamide may differ in 

regards to its time course. 

One of the objectives of this study was to correlate receptor affinity and 

pharmacological potency for the analogs. A good correlation exists for cannabinoids 

regarding their receptor affinities and pharmacological potencies (Compton et al., 1993). 

Several possible explanations exist to explain why correlation was not high for anandamide 

analogs. Previous correlation studies were performed with a much greater number of 

compounds possessing a wider range of potencies and affinities. On the other hand, 
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anandamide might be binding to different receptor subtypes, though there is no direct 

evidence for subtypes in the CNS. Although great care was taken to minimize differences 

in the fate of these compounds in the in vivo and in vitro conditions, it is likely that 

solubility factors, metabolism and tissue distribution were not the same for all of these 

compunds. 

Several very recent papers have explored the structure-activity relationships of 

anandamide and provide support for the conclusions drawn in this dissertation. Edgemond 

et al. (1994) investigated the role of the hydroxyl group in the binding of anandarnide using 

two analogs. For one analog the alkyl hydroxyl group was replaced with a hydroxyphenyl 

group, and the ethanolamide group of the second analog was replaced with a 

hydroxyphenyl group. Both compounds had weaker affinity for the CB I receptor than 

anandamide. Neither analog was a substrate for PMSF, which provides evidence that the 

amidase is selective for fatty acid ethanolamides. Recently, Pinto et al. (1994) studied the 

structure-activity requirements for a series of novel amides and rigid hairpin conformations 

typified by N-(2-hydroxyethyl)prostaglandin amides. Extending the hydroxyalkyl group 

by one carbon increased affinity to the CB I receptor by an order magnitude. Substituting 

the hydroxyalkyl moiety with a propyl group increased affinity by five-fold. They 

concluded that the bulk and length of the moiety attached to arachidonic acid are more 

important determinants of affinity for CB I than is hydrogen-bonding capability (Pinto et 

al., 1994). Venance et al. (1995) performed a limited SAR study to determine if changes in 

the levels of saturation of anandamide would affect anandamide's ability to inhibit gap-

junction conduction is striatal astrocyte cells. Analogs with 3, 2, 1 or O double bonds did 

not produce a significant effect on gap-junction inhibition. These results concur with the 

results presented in this dissertation that increasing the levels of saturation decreases 

activity. Finally, Welch et al. (1995) demonstrated that the fluorinated analog of 

anandamide (fluorine substitution of the hydroxyl) was more potent than either anandamide 
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or Li9-THC in producing antinociception following i.t. administration in the mouse. 

Results from this dissertation indicated that the fluorinated analog of anandamide had a 

higher Ki in the absence of PMSF, like anandamide, but had affinity greater in the presence 

of PMSF. It was similar in potency to anandamide in the spontaneous activity test, but was 

l O times less potent than anandamide in producing antinociception following i. v. 

administration. The difference in results from those of Welch et al. (1995) in regards to 

antinociception might be due to the route of administration, i.v. versus i.t.. 

The behavioral and the binding data support the existence of a receptor whose 

binding region possesses site(s) that accommodates both cannabinoid and anandamide 

analogs. Molecular modeling approaches also support this hypothesis by demonstrating 

that there is the possibility of a common pharmacophore (Martin et al., 1991). Specifically, 

an anandamide conformation has been obtained using Sybyl molecular modeling software. 

Thomas et al. (1996) performed a structure-activity analysis using several of the 

anandamide analogs described in this dissertation to determine a molecular conformation of 

anandamide that can be incorporated into a previously described model. A low energy 

conformation of anandamide and the classical cannabinoids can be obtained with the 

superposition of the oxygen of the carboxyamide with the pyran oxygen in Ll9-THC, the 

hydroxyl group of the ethanol with the phenolic hydroxyl group of Ll9-THC, the five 

terminal carbons and the pentyl side chain of Ll9-THC and the polyolefin loop overlaying 

with the cannabinoid tricyclic ring (Thomas et al., 1996). 

Several recent experiments have explored the link between the presence of 

cannabinoid receptors in specific brain areas, including the striatum, globus pallidus, 

substantia nigra pars reticulata and hippocampus, to the production of cannabinoid-induced 

behaviors. Evaluating the effects of anandamide in the CNS is critical to understanding the 

role of the proposed cannabinoid, or anandaminergic, neurochemical system. Intrastriatal 

injection of WIN 55,212-2, CP 55,940 and anandamide induced turning behavior in mice 
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(Souilhac et al., 1995). DA1 and DA2 antagonists or 6-hydroxydopamine lesions of the 

striatum blocked WIN 55,2 12-2 and CP 55,940-induced turning behavior, suggesting 

involvement of dopamine transmission in cannabinoid-induced turning. These results 

support the role of CB I receptor mediation upon nigrostriatal function in the basal ganglia 

It has been proposed that ti9-THC produces catalepsy by enhancing GABAergic 

transmission mediated by GABAA receptors located in the globus pallidus, a brain area 

particularly rich in cannabinoid receptors. Wickens and Pertwee (1993) found that both 

anandamide and ti9-THC enhanced the ability of muscimol, a GABAA receptor agonist, to 

induce catalepsy when the drugs were administered into the globus pallidus. The relevance 

to humans that anandamide, when administered intrapallidally, also enhanced the ability of 

a GABAA agonist to enhance catalepsy in rats is unknown. It also has been proposed that 

cannabinoid receptors on striatonigral neuron terminals may regulate movement by 

disinhibiting the activity of the substantia nigra pars reticulata neurons; this disinhibition 

may occur by inhibiting the release of GABA into the substantia nigra pars reticulata (Miller 

and Walker, 1995). These results suggest that a possible way by which endogenous 

cannabinoids may regulate movement is by inhibiting striatonigral neurotransmission and 

thereby disinhibiting the activity of the substantia nigra pars reticulata neurons. 

Autoradiographic studies in rats have demonstrated that the cannabinoid receptor is located 

on the axon terminals projecting to the globus pallidus and substantia nigra (Herkenham et 

al., 1991b). These neurons are selectively lost in Huntington's disease. Glass et al. 

(1993) used autoradiography to compare binding of [3H]-CP 55,940 in the substantia nigra 

of Huntington's disease and normal human brains. In normal brains, cannabinoid 

receptors are discreetly located within the substantia nigra pars reticulata. In contrast, 

Huntington's disease brains have a massive loss (97%) of cannabinoid receptor binding in 

the substantia nigra pars reticulata (Glass, Faull and Dragun ow, 1993). These results 

demonstrate that in the substantia nigra of the human brain, cannabinoid receptors are 
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located on striatonigral terminals which degenerate in Huntington's disease. Cannabinoid 

receptors are also present in the dentate gyrus and to a lesser extent in the entorhinal cortex. 

Cannabinoids have been found to decrease paired-pulse facilitation of synaptic transmission 

between perforant path axons and granule cells of the dentate gyrus (Kirby, Hampson and 

Deadwyler, 1995). These results provide evidence making it likely that cannabinoids, 

including endogenous compounds, play a role in controlling short-term plasticity of 

perforant path synapses. 

Cannabinoid receptors in the hippocampus have been implicated to produce 

impairment of memory. Lichtman et al. ( 1995) studied the effects of cannabinoids on the 

spatial memory in rats. Systemic administration of CP 55,940 and WIN 55,212-2 

disrupted performance in the eight arm radial-maze, but anandamide did not. These results 

suggest that systemic and intrahippocampal administration of cannabinoids acutely impair 

working memory. Interestingly, anandamide was also inactive in the delayed nonmatching 

to sample memory task in rats. The lack of effect of anandamide could be due to rapid 

degradation or species specificity. Another possibility is that anandamide, or other 

naturally occurring anandamides, might lack the memory-impairing effects of 

cannabinoids. These compounds would be useful therapeutic agents if they possess 

beneficial properties without impairing memory. Learning and memory processes result 

from hippocampal long-term potentiation formation. Cannabinoids prevent LTP in rat 

hippocampal slices. Anandamide also inhibits LTP (Collin et al., 1995; Terranova et al., 

1995). 

One of the hindrances of cannabinoid research for many years was the lack of an 

antagonist. The recent discovery of SR 141716A as the central cannabinoid antagonist 

should greatly facilitate studying the physiological and psychological purpose of an 

anandamide-based neurochemical system. If SR 141716A is the antagonist for the CB 1 
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receptor, then it should localize to the same population of cannabinoid receptors in the 

brain. Research has been conducted to assess the ability of SR 141716A to block the 

effects of cannabinoids and anandarnide in both in vitro and in vivo systems. SR 141716A 

antagonized the effects of cannabinoids in the mouse vas deferens and in inhibiting 

adenylyl cyclase in cells transfected with the CB I receptor (Rinaldi-Carmona et al., 1994). 

Inhibition of adenylyl cyclase in N 1sTG2 mouse neuroblastoma cells by the anandamides 

(22:4, n-6) and (20:3, n-6) was completely reversed by SR 141716A (Barg et al., 1995). 

In vivo, SR 141716A antagonized cannabinoid-induced antinociception, hypothermia, 

catalepsy and spontaneous activity depression (Rinaldi-Carmona et al., 1994). SR 

141716A antagonized turning behavior in mice produced by intrastriatal administration of 

WIN 55,212-2, CP 55,940 and anandamide (Souilhac et al., 1995). Anandamide's 

inhibition of LTP in rat hippocampal slices was reversed by the cannabinoid antagonist 

(Terranova et al., 1995). SR 141716A has been used to reveal whether CB1 receptor 

blockade alters electrophysiological functioning of DA neurons in the substantia nigra pars 

compacta, a target of the striato-nigral feedback system (Gueudet et al., 1995). Acutely, 

SR 141716A increased SNC DA cell population response; after repeated administration, 

SR 141716A decreased SNC DA cell population response. These results suggest that CB 1 

receptor blockade interrupts a cannabinoid endogenous tone controlling extrapyramidal 

function. Although SR 141716A blocks many of the effects of cannabinoids and 

anandamides, one study demonstrated that SR 141716A did not block anandamide's 

inhibition of gap-junction conductance in striatal astrocytes (Venance et al., 1995). This 

result indicates that anandamide may modulate gap-junction permeability through a 

mechanism distinct from the CB1 receptor. Thus, early research with SR 141716A 

indicates that it antagonizes the effects of cannabinoids and anandarnide. 

The purpose of the second part of this dissertation was to determine through 

autoradiographic experiments if CP 55,940, anandamide and SR 141716A, three 
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structurally diverse compounds, bound to the same populations of cannabinoid receptors. 

Since CP 55,940 is more potent than �9-THC, it has been used extensively to investigate 

the effects of cannabinoids in both in vitro and in vivo experiments. It is important to 

compare the binding patterns and densities of well-studied cannabinoids, such as CP 

55,940, with anandamide, the endogenous ligand to the cannabinoid receptor. Differences 

in receptor affinity and binding density between specific brain areas would provide 

evidence that an endogenous ligand does not mimic all of the effects of THC and other 

cannabinoids. If SR 141716A is truly an antagonist to the central cannabinoid receptor, 

then it should bind to the CB I receptor in a similar manner to the binding distribution of CP 

55,940 and anandamide. The use of SR 141716A as a cannabinoid antagonist is critical to 

disseminating the function of an anandaminergic system in the central nervous system. 

Therefore, establishing that SR 141716A is binding to CB I receptor in the same brain areas 

as anandamide and CP 55,940 is of great importance in this field. No quantitative 

comparison has yet been made between CP 55,940, anandamide and SR 141716A. 

Autoradiographic experiments were performed on rat brain slices to quantitate the 

receptor affinity and binding density for anandamide, CP 55,940 and SR 141716A to the 

central cannabinoid receptor. Measurements were made from 11 brain regions including 

the entorhinal, occipital, parietal and frontal cortex, the lateral and medial caudate-putamen, 

dentate gyms, CAI and CA3 regions of Ammon's horn, the substantia nigra pars reticulata 

and the molecular layer of the cerebellum. These areas were selected since cannabinoids 

have been shown to produce effects, such as memory disturbances, alterations in cognition 

and movement, through probable interaction with these regions. 

Comparisons were made between receptor affinities (Ki's) for each drug for the 

selected brain regions. Statistical differences did not exist for anandamide's Ki's for the 

brain areas, nor were there any statistical differences between Ki's for CP 55,940 and SR 

141716A. Thus, anandamide's affinity for the central cannabinoid receptor is the same 
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across all of the rat brain examined. This is also true for SR 141716A and CP 55,940. 

The next comparison was to determine if the three compounds were binding to the receptor 

in the same manner. This was established through determination of the parallelism for a 

representative curve from each region. All curves for anandamide and CP 55,940 were 

parallel. All curves, except for the entorhinal cortex, for SR 141716A were parallel. The 

physiological relevance of this difference remains to be established. The final comparison 

was made by correlating the binding densities for anandamide and SR 141716A with the 

binding densities of CP 55,940. High correlations existed, thus demonstrating that the 

density in the cannabinoid receptors binding anandamide, CP 55,940 and SR 141716A 

were very similar. 

In summary, based upon an evaluation of receptor affinities for CP 55,940, 

anandamide and SR 141716A and a comparison of receptor densities, the three compounds 

appear to be binding to the same population of receptors in different brain areas. These 

results provide both visual and quantitative results that the central cannabinoid receptor 

binds all three compounds in a similar manner. 

Even though the results in this dissertation provide no evidence for receptor 

subtypes, it does not rule out the possibility that subtypes do exist. The technique of 

autoradiography is not sensitive enough to detect small differences in receptor 

subpopulations. Pharmacological differences between anandamide and other cannabinoids 

could be due to interaction with a small number of as yet undiscovered subtypes. 

Differences could also be metabolic in nature or to as yet undiscovered mechanisms. 

Speculating on the physiological role of the anandaminergic system is difficult. 

One cannot explain how a receptor can accommodate such a structurally diverse group of 

compounds. Although ,19-THC has been proposed to interact with the cannabinoid 

receptor through a three point attachment, it is unknown which areas of anandamide, the 

aminoalkylindoles and SR 141716A corresponds to these structural moieties in ,19-THC. 
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Future research will be essential in establishing the biological function of anandamide and 

the family of anandamides. 

In summary, this dissertation investigated anandamide's interaction with the central 

cannabinoid receptor. Specific aims of this dissertation were met. Structural features of 

anandamide important for anandamide's interaction with the cannabinoid receptor were 

determined by in vitro and in vivo assays; anandamide was structurally modified to develop 

compounds with higher binding affinity to the cannabinoid receptor; anandamide's binding 

to the central cannabinoid receptor was characterized autoradiograpically in select brain 

regions; and anandamide, CP 55,940 and the cannabinoid antagonist, SR 141716A were 

shown to, respectively, bind to the same population of receptors in the same manner. 
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